Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Date Range
2012 2019


The growing demand for high performance and power hungry portable electronic devices has resulted in alarmingly serious thermal concerns in recent times. The power management system of such devices has thus become increasingly more vital. An integral component of this system is a Low-Dropout Regulator (LDO) which inherently generates a low-noise power supply. Such power supplies are crucial for noise sensitive analog blocks like analog-to-digital converters, phase locked loops, radio-frequency circuits, etc. At higher output power however, a single LDO suffers from increased heat dissipation leading to thermal issues. This research presents a novel approach to equally and accurately share …

Contributors
Talele, Bhushan, Bakkaloglu, Bertan, Kitchen, Jennifer, et al.
Created Date
2017

Radio frequency (RF) transceivers require a disproportionately high effort in terms of test development time, test equipment cost, and test time. The relatively high test cost stems from two contributing factors. First, RF transceivers require the measurement of a diverse set of specifications, requiring multiple test set-ups and long test times, which complicates load-board design, debug, and diagnosis. Second, high frequency operation necessitates the use of expensive equipment, resulting in higher per second test time cost compared with mixed-signal or digital circuits. Moreover, in terms of the non-recurring engineering cost, the need to measure complex specfications complicates the test development …

Contributors
Nassery, Afsaneh, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2013

Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope …

Contributors
Jeong, Jae Woong, Ozev, Sule, Kitchen, Jennifer, et al.
Created Date
2015

This work is concerned with the use of shielded loop antennas to measure permittivity as a low-cost alternative to expensive probe-based systems for biological tissues and surrogates. Beginning with the development of a model for simulation, the shielded loop was characterized. Following the simulations, the shielded loop was tested in free space and while holding a cup of water. The results were then compared. Because the physical measurements and the simulation results did not line up, simulation results were forgone. The shielded loop antenna was then used to measure a set of NaCl saline solutions with varying molarities. This measurement …

Contributors
Yiin, Nathan, Aberle, James, Bakkaloglu, Bertan, et al.
Created Date
2018

Performance failure due to aging is an increasing concern for RF circuits. While most aging studies are focused on the concept of mean-time-to-failure, for analog circuits, aging results in continuous degradation in performance before it causes catastrophic failures. In this regard, the lifetime of RF/analog circuits, which is defined as the point where at least one specification fails, is not just determined by aging at the device level, but also by the slack in the specifications, process variations, and the stress conditions on the devices. In this dissertation, firstly, a methodology for analyzing the performance degradation of RF circuits caused …

Contributors
Chang, Doo Hwang, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2017

Power management circuits are employed in most electronic integrated systems, including applications for automotive, IoT, and smart wearables. Oftentimes, these power management circuits become a single point of system failure, and since they are present in most modern electronic devices, they become a target for hardware security attacks. Digital circuits are typically more prone to security attacks compared to analog circuits, but malfunctions in digital circuitry can affect the analog performance/parameters of power management circuits. This research studies the effect that these hacks will have on the analog performance of power circuits, specifically linear and switching power regulators/converters. Apart from …

Contributors
Malakar, Pragya Priya, Kitchen, Jennifer, Ozev, Sule, et al.
Created Date
2019

A Multi-input single inductor dual-output Boost based architecture for Multi-junction PV energy harvesting source is presented. The system works in Discontinuous Conduction Mode to achieve the independent input regulation for multi-junction PV source. A dual-output path is implemented to regulate the output at 3V as well as store the extra energy at light load condition. The dual-loop based sliding-mode MPPT for multi-junction PV is proposed to speed up the system response time for prompt irradiation change as well as maximize MPPT efficiency. The whole system achieves peak efficiency of 83% and MPPT efficiency of 95%. The whole system is designed, …

Contributors
Geng, Yu, Kiaei, Sayfe, Bakkaloglu, Bertan, et al.
Created Date
2017

Negative Bias Temperature Instability (NBTI) is commonly seen in p-channel transistors under negative gate voltages at an elevated temperature. The interface traps, oxide traps and NBTI mechanisms are discussed and their effect on circuit degradation and results are discussed. This thesis focuses on developing a model for simulating impact of NBTI effects at circuit level. The model mimics the effects of degradation caused by the defects. The NBTI model developed in this work is validated and sanity checked by using the simulation data from silvaco and gives excellent results. Furthermore the susceptibility of CMOS circuits such as the CMOS inverter, …

Contributors
Padala, Sudheer, Barnaby, Hugh, Bakkaloglu, Bertan, et al.
Created Date
2014

The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon. A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division …

Contributors
Bensalem, Brahim, Aberle, James T., Bakkaloglu, Bertan, et al.
Created Date
2018

Rail clamp circuits are widely used for electrostatic discharge (ESD) protection in semiconductor products today. A step-by-step design procedure for the traditional RC and single-inverter-based rail clamp circuit and the design, simulation, implementation, and operation of two novel rail clamp circuits are described for use in the ESD protection of complementary metal-oxide-semiconductor (CMOS) circuits. The step-by-step design procedure for the traditional circuit is technology-node independent, can be fully automated, and aims to achieve a minimal area design that meets specified leakage and ESD specifications under all valid process, voltage, and temperature (PVT) conditions. The first novel rail clamp circuit presented …

Contributors
Venkatasubramanian, Ramachandran, Ozev, Sule, Bakkaloglu, Bertan, et al.
Created Date
2016