Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Skin electronics is one of the most promising applications of stretchable electronics. The versatility of skin electronics can only be guaranteed when it has conformal contact with human skin. While both analytical and numerical solutions for contact between serpentine interconnects and soft substrate remain unreported, the motivation of this thesis is to render a novel method to numerically study the conformability of the serpentine interconnects. This thesis explained thoroughly how to conduct finite element analysis for the conformability of skin electronics, including modeling, meshing method and step setup etc.. User-defined elements were implemented to the finite element commercial package ABAQUS …

Contributors
Fan, Yiling, Jiang, Hanqing, Hildreth, Owen, et al.
Created Date
2015

Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of …

Contributors
Lv, Cheng, Jiang, Hanqing, Yu, Hongbin, et al.
Created Date
2016