Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were demonstrated. In the ECS NWs part, systematic experiments were performed to investigate the relation between growth temperature and NWs structure. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence characterization were used to study the NWs morphology, crystal quality and optical properties. At low growth temperature, there was strong Si …

Ning, Hao, Ning, Cunzheng, Yu, Hongbin, et al.
Created Date

This thesis summarizes modeling and simulation of plasmonic waveguides and nanolasers. The research includes modeling of dielectric constants of doped semiconductor as a potential plasmonic material, simulation of plasmonic waveguides with different configurations and geometries, simulation and design of plasmonic nanolasers. In the doped semiconductor part, a more accurate model accounting for dielectric constant of doped InAs was proposed. In the model, Interband transitions accounted for by Adachi's model considering Burstein-Moss effect and free electron effect governed by Drude model dominate in different spectral regions. For plasmonic waveguide part, Insulator-Metal-Insulator (IMI) waveguide, silver nanowire waveguide with and without substrate, Metal-Semiconductor-Metal …

Wang, Haotong, Ning, Cunzheng, Palais, Joseph, et al.
Created Date