Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results …

Contributors
Wang, Ding, Lin, Jerry Y.S., Pfeffer, Robert, et al.
Created Date
2011

The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable future. Likewise, bioproduced aromatic building blocks for sustainable manufacturing such as phenol will be equally important. The production of these compounds is often limited by product toxicity at 2- 20 g/L, whereas it may desirable to produce 20-200 g/L for economically feasible scale up. While low-cost feedstocks are desirable for …

Contributors
Staggs, Kyle William, Nielsen, David R, Lin, Jerry S, et al.
Created Date
2017

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material …

Contributors
McIntyre, Sean, Mu, Bin, Green, Matthew, et al.
Created Date
2019

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has proved to be efficient in removing PFAS from water. There is a need to study the effectiveness of commercially available sorbents in PFAS removal at the pilot-scale with real PFAS contaminated water, which would aid in efficient full-scale plant design. Additionally, there is also a need to have validated bench-scale …

Contributors
Venkatesh, Krishishvar, Westerhoff, Paul, Sinha, Shahnawaz, et al.
Created Date
2020