Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Resource Type
  • Masters Thesis
Date Range
2013 2019


Corrosion fatigue has been of prime concern in railways, aerospace, construction industries and so on. Even in the case of many medical equipment, corrosion fatigue is considered to be a major challenge. The fact that even high strength materials have lower resistance to corrosion fatigue makes it an interesting area for research. The analysis of propagation of fatigue crack growth under environmental interaction and the life prediction is significant to reduce the maintenance costs and assure structural integrity. Without proper investigation of the crack extension under corrosion fatigue, the scenario can lead to catastrophic disasters due to premature failure of …

Contributors
Kurian, Bianca, Liu, Yongming, Nian, Qiong, et al.
Created Date
2019

This thesis intends to cover the experimental investigation of the propagation of laser-generated optoacoustic waves in structural materials and how they can be utilized for damage detection. Firstly, a system for scanning a rectangular patch on the sample is designed. This is achieved with the help of xy stages which are connected to the laser head and allow it to move on a plane. Next, a parametric study was designed to determine the optimum testing parameters of the laser. The parameters so selected were then used in a series of tests which helped in discerning how the Ultrasound Waves behave …

Contributors
Ravi Narayanan, Venkateshwaran, Liu, Yongming, Zhuang, Houlong, et al.
Created Date
2019

Non-Destructive Testing (NDT) is a branch of scientific methods and techniques used to evaluate the defects and irregularities in engineering materials. These methods conduct testing without destroying or altering material’s structure and functionality. Most of these defects are subsurface making them difficult to detect and access. SONIC INFRARED (IR) is a relatively new and emerging vibrothermography method under the category of NDT methods. This is a fast NDT inspection method that uses an ultrasonic generator to pass an ultrasonic pulse through the test specimen which results in a temperature variation in the test specimen. The temperature increase around the area …

Contributors
Darnal, Aryabhat, Liu, Yongming, Zhuang, Houlong, et al.
Created Date
2019

Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress …

Contributors
Liu, Siying, Liu, Yongming, Jiao, Yang, et al.
Created Date
2018

This investigation is focused on the consideration of structural uncertainties in nearly-straight pipes conveying fluid and on the effects of these uncertainties on the dynamic response and stability of those pipes. Of interest more specifically are the structural uncertainties which affect directly the fluid flow and its feedback on the structural response, e.g., uncertainties on/variations of the inner cross-section and curvature of the pipe. Owing to the complexity of introducing such uncertainties directly in finite element models, it is desired to proceed directly at the level of modal models by randomizing simultaneously the appropriate mass, stiffness, and damping matrices. The …

Contributors
Shah, Shrinil, Mignolet, Marc P, Liu, Yongming, et al.
Created Date
2017

The focus of this investigation is on the development of a surrogate model of hypersonic aerodynamic forces on structures to reduce the computational effort involved in the determination of the structural response. The application is more precisely focused on uncertain structures. Then, following an uncertainty management strategy, the surrogate may exhibit an error with respect to Computational Fluid Dynamics (CFD) reference data as long as that error does not significantly affect the uncertainty band of the structural response. Moreover, this error will be treated as an epistemic uncertainty introduced in the model thereby generating an uncertain surrogate. Given this second …

Contributors
Sharma, Pulkit, Mignolet, Marc Paul, Liu, Yongming, et al.
Created Date
2017

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the …

Contributors
Veeresh, Pawan Manjunath, Oswald, Jay, Jiang, Hanqing, et al.
Created Date
2016

A previously developed small time scale fatigue crack growth model is improved, modified and extended with an emphasis on creating the simplest models that maintain the desired level of accuracy for a variety of materials. The model provides a means of estimating load sequence effects by continuously updating the crack opening stress every cycle, in a simplified manner. One of the significant phenomena of the crack opening stress under negative stress ratio is the residual tensile stress induced by the applied compressive stress. A modified coefficient is introduced to determine the extent to which residual stress impact the crack closure …

Contributors
Venkatesan, Karthik Rajan, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts. Cohesive zone model in conjugation with XFEM is used for analysis in static condition in order to check its applicability in failure analysis. A real time setup of pipeline failure due to impingement is analyzed along with a detailed parametric study to understand the influence of the prominent design variable. After …

Contributors
Chandrasekhar, Vishal, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016

In this paper, at first, analytical formulation of J-integral for a non-local particle model (VCPM) using atomic scale finite element method is proposed for fracture analysis of 2D solids. A brief review of classical continuum-based J-integral and anon-local lattice particle method is given first. Following this, detailed derivation for the J-integral in discrete particle system is given using the energy equivalence and stress-tensor mapping between the continuum mechanics and lattice-particle system.With the help of atomistic finite element method, the J-integral is expressed as a summation of the corresponding terms in the particle system. Secondly, a coupling algorithm between a non-local …

Contributors
Zope, Jayesh Vishnu, Liu, Yongming, Oswald, Jay, et al.
Created Date
2016