Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

The past decade has seen a drastic increase in collaboration between Computer Science (CS) and Molecular Biology (MB). Current foci in CS such as deep learning require very large amounts of data, and MB research can often be rapidly advanced by analysis and models from CS. One of the places where CS could aid MB is during analysis of sequences to find binding sites, prediction of folding patterns of proteins. Maintenance and replication of stem-like cells is possible for long terms as well as differentiation of these cells into various tissue types. These behaviors are possible by controlling the expression …

Balachandran, Parithi, Wang, Xiao, Brafman, David, et al.
Created Date