Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


In trading, volume is a measure of how much stock has been exchanged in a given period of time. Since every stock is distinctive and has an alternate measure of shares, volume can be contrasted with historical volume inside a stock to spot changes. It is likewise used to affirm value patterns, breakouts, and spot potential reversals. In my thesis, I hypothesize that the concept of trading volume can be extrapolated to social media (Twitter). The ubiquity of social media, especially Twitter, in financial market has been overly resonant in the past couple of years. With the growth of its …

Contributors
Awasthi, Piyush, Davulcu, Hasan, Tong, Hanghang, et al.
Created Date
2015

The increasing usage of smart-phones and mobile devices in work environment and IT industry has brought about unique set of challenges and opportunities. ARM architecture in particular has evolved to a point where it supports implementations across wide spectrum of performance points and ARM based tablets and smart-phones are in demand. The enhancements to basic ARM RISC architecture allow ARM to have high performance, small code size, low power consumption and small silicon area. Users want their devices to perform many tasks such as read email, play games, and run other online applications and organizations no longer desire to provision …

Contributors
Chowdhary, Ankur, Huang, Dijiang, Tong, Hanghang, et al.
Created Date
2015

Micro-blogging platforms like Twitter have become some of the most popular sites for people to share and express their views and opinions about public events like debates, sports events or other news articles. These social updates by people complement the written news articles or transcripts of events in giving the popular public opinion about these events. So it would be useful to annotate the transcript with tweets. The technical challenge is to align the tweets with the correct segment of the transcript. ET-LDA by Hu et al [9] addresses this issue by modeling the whole process with an LDA-based graphical …

Contributors
Acharya, Anirudh, Kambhampati, Subbarao, Davulcu, Hasan, et al.
Created Date
2015

The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously for capturing different aspects of the real world attributes has also led to an increase in dimensionality from uni-variate to multi-variate time series. This has facilitated richer data representation but also has necessitated algorithms determining similarity between two multi-variate time series for search and analysis. Various algorithms have been extended from uni-variate to multi-variate case, such as multi-variate versions of Euclidean distance, edit distance, dynamic …

Contributors
Garg, Yash, Candan, Kasim Selcuk, Chowell-Punete, Gerardo, et al.
Created Date
2015

Measuring node centrality is a critical common denominator behind many important graph mining tasks. While the existing literature offers a wealth of different node centrality measures, it remains a daunting task on how to intervene the node centrality in a desired way. In this thesis, we study the problem of minimizing the centrality of one or more target nodes by edge operation. The heart of the proposed method is an accurate and efficient algorithm to estimate the impact of edge deletion on the spectrum of the underlying network, based on the observation that the edge deletion is essentially a local, …

Contributors
Peng, Ruiyue, Tong, Hanghang, He, Jingrui, et al.
Created Date
2016

The game held by National Basketball Association (NBA) is the most popular basketball event on earth. Each year, tons of statistical data are generated from this industry. Meanwhile, managing teams, sports media, and scientists are digging deep into the data ocean. Recent research literature is reviewed with respect to whether NBA teams could be analyzed as connected networks. However, it becomes very time-consuming, if not impossible, for human labor to capture every detail of game events on court of large amount. In this study, an alternative method is proposed to parse public resources from NBA related websites to build degenerated …

Contributors
Zhang, Xiaoyu, Tong, Hanghang, He, Jingrui, et al.
Created Date
2017

Online learning platforms such as massive online open courses (MOOCs) and intelligent tutoring systems (ITSs) have made learning more accessible and personalized. These systems generate unprecedented amounts of behavioral data and open the way for predicting students’ future performance based on their behavior, and for assessing their strengths and weaknesses in learning. This thesis attempts to mine students’ working patterns using a programming problem solving system, and build predictive models to estimate students’ learning. QuizIT, a programming solving system, was used to collect students’ problem-solving activities from a lower-division computer science programming course in 2016 Fall semester. Differential mining techniques …

Contributors
Mandal, Partho Pratim, Hsiao, I-Han, Davulcu, Hasan, et al.
Created Date
2017