Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Date Range
2011 2019


A simulation study was conducted to explore the robustness of general factor mean difference estimation in bifactor ordered-categorical data. In the No Differential Item Functioning (DIF) conditions, the data generation conditions varied were sample size, the number of categories per item, effect size of the general factor mean difference, and the size of specific factor loadings; in data analysis, misspecification conditions were introduced in which the generated bifactor data were fit using a unidimensional model, and/or ordered-categorical data were treated as continuous data. In the DIF conditions, the data generation conditions varied were sample size, the number of categories per …

Contributors
Liu, Yixing, Thompson, Marilyn, Levy, Roy, et al.
Created Date
2019

Dynamic Bayesian networks (DBNs; Reye, 2004) are a promising tool for modeling student proficiency under rich measurement scenarios (Reichenberg, in press). These scenarios often present assessment conditions far more complex than what is seen with more traditional assessments and require assessment arguments and psychometric models capable of integrating those complexities. Unfortunately, DBNs remain understudied and their psychometric properties relatively unknown. If the apparent strengths of DBNs are to be leveraged, then the body of literature surrounding their properties and use needs to be expanded upon. To this end, the current work aimed at exploring the properties of DBNs under a …

Contributors
Reichenberg, Raymond E., Levy, Roy, Eggum-Wilkens, Natalie, et al.
Created Date
2018

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline …

Contributors
Xu, Yuning, Green, Samuel, Levy, Roy, et al.
Created Date
2018

The purpose of this study was to examine the association between characteristics of the symptomatology change curve (i.e., initial symptomatology, rate of change, curvature) and final treatment outcome. The sample consisted of community clients (N = 492) seen by 204 student therapists at a training clinic. A multilevel approach to account for therapist effects was followed. Linear, quadratic, and cubic trajectories of anxiety and depression symptomatology, as assessed by the Shorter Psychotherapy and Counseling Evaluation (sPaCE; Halstead, Leach, & Rust, 2007), were estimated. The multilevel quadratic trajectory best fit the data and depicted a descending curve (partial “U”-shaped). The quadratic …

Contributors
Jimenez Arista, Laura E., Tracey, Terence, Kinnier, Richard, et al.
Created Date
2018

Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model with latent variables in the Bayesian framework with various accurate and inaccurate priors for structural and measurement model parameters has yet to be evaluated in a statistical simulation. This dissertation outlines the steps in the estimation of a single mediator model with latent variables as a Bayesian structural equation model …

Contributors
Miocevic, Milica, MacKinnon, David P., Levy, Roy, et al.
Created Date
2017

The primary objective of this study was to revise a measure of exogenous instrumentality, part of a larger scale known as the Perceptions of Instrumentality Scale (Husman, Derryberry, Crowson, & Lomax, 2004) used to measure future oriented student value for course content. Study 1 piloted the revised items, explored the factor structure, and provided initial evidence for the reliability and validity of the revised scale. Study 2 provided additional reliability evidence but a factor analysis with the original and revised scale items revealed that the revised scale was measuring a distinct and separate construct that was not exogenous instrumentality. Here …

Contributors
Puruhito, Krista Kay, Husman, Jenefer, Glenberg, Arthur, et al.
Created Date
2017

The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of each individual dataset. Many data fusion methods have been proposed in the literature, although most utilize the frequentist framework. This dissertation investigates a new approach called Bayesian Synthesis in which information obtained from one dataset acts as priors for the next analysis. This process continues sequentially until a single posterior …

Contributors
Marcoulides, Katerina Marie, Grimm, Kevin, Levy, Roy, et al.
Created Date
2017

Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis models are used which a) do not accurately capture the structure of relationships in the data such as clustered/hierarchical data, b) do not allow or control for missing values present in the data, or c) do not accurately compensate for different data types such as categorical data, then the assumptions associated with the model have not been met and the …

Contributors
Kunze, Katie Lynn, Levy, Roy, Enders, Craig K, et al.
Created Date
2016

Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150, intraclass correlation (ICC) ranging from 0.10 to 0.50, model complexity ranging from one predictor to three predictors), this study intends to provide general guidelines about adequate sample sizes at three levels under varying ICC conditions for a viable three level HLM analysis (e.g., reasonably unbiased and accurate parameter estimates). In this study, the data generating parameters for the were obtained …

Contributors
Yel, Nedim, Levy, Roy, Elliott, Stephen N, et al.
Created Date
2016

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across …

Contributors
Liu, Yixing, Thompson, Marilyn, Green, Samuel, et al.
Created Date
2016