Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Date Range
2011 2019


Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in any membrane separation. In desalination concentration polarization can lead to reduced water flux, increased propensity for membrane scaling, and decreased quality of the product water. Quantifying concentration polarization is important because reducing concentration polarization requires increased capital and operating costs in the form of feed spacers and high feed flow …

Contributors
Mann, Stewart Conrad, Lind, Mary Laura, Walker, Shane, et al.
Created Date
2019

Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of sample preparation and detection by specialized equipment, limiting the feasibility of large-scale monitoring of NMs. A need exists to develop a rapid pre-screening technique to detect, within minutes, nanomaterials in complex matrices. The goal of this dissertation is to develop a tiered process to detect and characterize nanomaterials in consumer …

Contributors
Schoepf, Jared, Westerhoff, Paul, Dai, Lenore, et al.
Created Date
2018

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations. Static TGA …

Contributors
James, Joshua B., Lin, Jerry Y.S., Emady, Heather, et al.
Created Date
2017

The aims of this project are to demonstrate the design and implementation of separations modalities for 1) in situ product recovery and 2) upstream pretreatment of toxic feedstocks. Many value-added bioproducts such as alcohols (ethanol and butanol) developed for the transportation sector are known to be integral to a sustainable future. Likewise, bioproduced aromatic building blocks for sustainable manufacturing such as phenol will be equally important. The production of these compounds is often limited by product toxicity at 2- 20 g/L, whereas it may desirable to produce 20-200 g/L for economically feasible scale up. While low-cost feedstocks are desirable for …

Contributors
Staggs, Kyle William, Nielsen, David R, Lin, Jerry S, et al.
Created Date
2017

Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS) used on the National Aeronautics and Space Administration (NASA) shuttles recovers only 70% of generated wastewater.1 Current osmotic processes show high capability to increase water recovery from wastewater. However, commercial reverse osmosis (RO) membranes rapidly degrade when exposed to pretreated urine-containing wastewater. Also, non-ionic small molecules substances (i.e., urea) are …

Contributors
Khosravi, Afsaneh Khosravi, Lind, Mary Laura, Dai, Lenore, et al.
Created Date
2016

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular …

Contributors
Nickerson, Stella Day, Dai, Lenore L, Yu, Hongyu, et al.
Created Date
2016

Silicone compounds have a very low surface energy due to highly flexible Si-O-Si backbone and large number of –CH3 groups, but these compounds are extremely hydrophobic and thus have limited applications in aqueous formulations. Modification of such silicone compounds by grafting hydrophilic chains provides a wide range of silicone products called "Silicone Surfactants". Silicone surfactants are surface active agents which get adsorbed at the air-water interface thereby, reducing the interfacial tension. Some of the larger applications of silicone surfactant are in the manufacture of plastic foams, in personal care products and as spreading and wetting agents (Hill, R.M, 2002). In …

Contributors
Singh, Pummy, Green, Matthew, He, Ximin, et al.
Created Date
2016

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the …

Contributors
Pugh, Shawn, Nielsen, David, Dai, Lenore, et al.
Created Date
2016

In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the high cost of palladium limits widespread application. Amorphous metals with lower cost elements are one alternative to replace palladium-based membranes. The overall aim of this thesis is to investigate the potential of binary and ternary amorphous metallic membranes for hydrogen separation. First, as a benchmark, the influence of surface state of Pd77Ag23 crystalline metallic membranes on the hydrogen permeability was …

Contributors
LAI, TIANMIAO, Lind, Mary Laura, Lin, Jerry, et al.
Created Date
2015

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on …

Contributors
Chen, Haobo, Dai, Lenore L, Dai, Lenore L, et al.
Created Date
2015