Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Subject
Date Range
2010 2019


In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or …

Contributors
Underwood, Avery, Wilson, Melissa, Buetow, Kenneth, et al.
Created Date
2019

Biochemical reactions underlie all living processes. Their complex web of interactions is difficult to fully capture and quantify with simple mathematical objects. Applying network science to biology has advanced our understanding of the metabolisms of individual organisms and the organization of ecosystems, but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, I constructed biochemical networks using global databases of annotated genomes and metagenomes, and biochemical reactions. I uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical …

Contributors
Smith, Harrison Brodsky, Walker, Sara I, Anbar, Ariel D, et al.
Created Date
2018

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Study of canine cancer’s molecular underpinnings holds great potential for informing veterinary and human oncology. Sporadic canine cancers are highly abundant (~4 million diagnoses/year in the United States) and the dog’s unique genomic architecture due to selective inbreeding, alongside the high similarity between dog and human genomes both confer power for improving understanding of cancer genes. However, characterization of canine cancer genome landscapes has been limited. It is hindered by lack of canine-specific tools and resources. To enable robust and reproducible comparative genomic analysis of canine cancers, I have developed a workflow for somatic and germline variant calling in canine …

Contributors
Sivaprakasam, Karthigayini, Dinu, Valentin, Trent, Jeffrey, et al.
Created Date
2018

Circular RNAs (circRNAs) are a class of endogenous, non-coding RNAs that are formed when exons back-splice to each other and represent a new area of transcriptomics research. Numerous RNA sequencing (RNAseq) studies since 2012 have revealed that circRNAs are pervasively expressed in eukaryotes, especially in the mammalian brain. While their functional role and impact remains to be clarified, circRNAs have been found to regulate micro-RNAs (miRNAs) as well as parental gene transcription and may thus have key roles in transcriptional regulation. Although circRNAs have continued to gain attention, our understanding of their expression in a cell-, tissue- , and brain …

Contributors
Sekar, Shobana, Liang, Winnie S, Dinu, Valentin, et al.
Created Date
2018

Immunotherapy has been revitalized with the advent of immune checkpoint blockade treatments, and neo-antigens are the targets of immune system in cancer patients who respond to the treatments. The cancer vaccine field is focused on using neo-antigens from unique point mutations of genomic sequence in the cancer patient for making personalized cancer vaccines. However, we choose a different path to find frameshift neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on frameshift antigens. In this dissertation, I have summarized and characterized all the potential frameshift antigens from microsatellite regions in human, dog and mouse. A list …

Contributors
Zhang, Jian, Johnston, Stephen Albert, Chang, Yung, et al.
Created Date
2018

Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could …

Contributors
Wang, Lu, Johnston, Stephen, Stafford, Phillip, et al.
Created Date
2018

Rewired biological pathways and/or rewired microRNA (miRNA)-mRNA interactions might also influence the activity of biological pathways. Here, rewired biological pathways is defined as differential (rewiring) effect of genes on the topology of biological pathways between controls and cases. Similarly, rewired miRNA-mRNA interactions are defined as the differential (rewiring) effects of miRNAs on the topology of biological pathways between controls and cases. In the dissertation, it is discussed that how rewired biological pathways (Chapter 1) and/or rewired miRNA-mRNA interactions (Chapter 2) aberrantly influence the activity of biological pathways and their association with disease. This dissertation proposes two PageRank-based analytical methods, Pathways …

Contributors
Li, Chaoxing, Dinu, Valentin, Kuang, Yang, et al.
Created Date
2017

The greatest barrier to understanding how life interacts with its environment is the complexity in which biology operates. In this work, I present experimental designs, analysis methods, and visualization techniques to overcome the challenges of deciphering complex biological datasets. First, I examine an iron limitation transcriptome of Synechocystis sp. PCC 6803 using a new methodology. Until now, iron limitation in experiments of Synechocystis sp. PCC 6803 gene expression has been achieved through media chelation. Notably, chelation also reduces the bioavailability of other metals, whereas naturally occurring low iron settings likely result from a lack of iron influx and not as …

Contributors
Kellom, Matthew, Raymond, Jason, Anbar, Ariel, et al.
Created Date
2017

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017