Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Subject
Date Range
2011 2019


The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the …

Contributors
Mondal, Indrayudh, Abbaszadegan, Morteza, Dahlen, Paul, et al.
Created Date
2019

This dissertation advances the capability of water infrastructure utilities to anticipate and adapt to vulnerabilities in their systems from temperature increase and interdependencies with other infrastructure systems. Impact assessment models of increased heat and interdependencies were developed which incorporate probability, spatial, temporal, and operational information. Key findings from the models are that with increased heat the increased likelihood of water quality non-compliances is particularly concerning, the anticipated increases in different hardware components generate different levels of concern starting with iron pipes, then pumps, and then PVC pipes, the effects of temperature increase on hardware components and on service losses are …

Contributors
Bondank, Emily Nicole, Chester, Mikhail V, Ruddell, Benjamin L, et al.
Created Date
2019

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize …

Contributors
ALGHAMDI, HUSSAM SUHAIL, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2019

This report analyzed the dynamic response of a long, linear elastic concrete bridge subject to spatially varying ground displacements as well as consistent ground displacements. Specifically, the study investigated the bridge’s response to consistent ground displacements at all supports (U-NW), ground displacements with wave passage effects and no soil profile variability (U-WP), and ground displacements with both wave passage effects and soil profile variability (V-WP). Time-history ground displacements were taken from recordings of the Loma Prieta, Duzce, and Chuetsu earthquakes. The two horizontal components of each earthquake time-history displacement record were applied to the bridge supports in the transverse and …

Contributors
Seawright, Jordan Michael, Hjelmstad, Keith, Rajan, Subramaniam, et al.
Created Date
2019

Thermal extremes are responsible for more than 90% of all weather-related deaths in the United States, with heat alone accounting for an annual death toll of 618. With the combination of global warming and urban expansion, cities are becoming hotter and the threat to the well-being of citizens in urban areas is growing. Because people in modern societies (and in particular, vulnerable groups such as the elderly) spend most of their time inside their home, indoor exposure to heat is the underlying cause in a considerable fraction of heat-related morbidity and mortality. Notably, this can be observed in many US …

Contributors
Baniassadi, Amir, Sailor, David J, Bryan, Harvey M, et al.
Created Date
2019

Flooding is a critical issue around the world, and the absence of comprehension of watershed hydrologic reaction results in lack of lead-time for flood forecasting and expensive harm to property and life. It happens when water flows due to extreme rainfall storm, dam breach or snowmelt exceeds the capacity of river system reservoirs and channels. The objective of this research was to develop a methodology for determining a time series operation for releases through control gates of river-reservoir systems during flooding events in a real-time using one- and/or two-dimensional modeling of flows through river-reservoir systems. The optimization-simulation methodology interfaces several …

Contributors
Albo-Salih, Hasan Hadi Kraidi, Mays, Larry W, Fox, Peter, et al.
Created Date
2019

Asphalt concrete is a non-homogenous viscoelastic material; its behavior depends on the properties of the asphalt binder and the aggregate skeleton. The two major distresses in flexible pavements, fatigue cracking and rutting, have different mechanisms in that the way binders and mixtures behavior are related differ. Further complicating the issues is that distresses in asphalt pavement are dependent on climate, pavement structure, and traffic loads, in addition to factors such as properties of the asphalt mixture itself. Hence, to characterize the multiscale mechanics associated with binder to mixture behaviors, researchers characterized the fatigue and rutting resistance of asphalt binders and …

Contributors
Salim, Ramadan A, Underwood, Shane, Kaloush, Kamil, et al.
Created Date
2019

The success or failure of projects is not determined only by procedures, tasks, and technologies, but also by the project team and its effectiveness. In order to lead project teams towards successful outcomes, project managers must maintain high quality relationships in the workplace. When looking at employees’ relationships in the workplace, Social Exchange Theory introduces two types of exchanges: employee-organization and leader-member exchanges. While both types of exchanges focus exclusively on the employee’s longitudinal relationships, the interpersonal relationships among the team members are usually overlooked. This research presents the results of a quantitative study of the interpersonal relationships of 327 …

Contributors
K. Jamali, M. Hossein, Wiezel, Avi, Sullivan, Kenneth T., et al.
Created Date
2019

The rate of urbanization has been impacted by global economic growth. A strong economy results in more people moving to already crowded urban centers to take advantage of increased employment opportunities often resulting in sprawling of the urban area. More natural land resources are being exploited to accommodate these anthropogenic activities. Subsequently, numerous natural land resources such as green areas or porous soil, which are less flood-prone and more permeable are being converted into buildings, parking lots, roads and underground utilities that are less permeable to stormwater runoff from rain events. With the diminishing of the natural landscape that can …

Contributors
Zhang, Pengfei, Ariaratnam, Samuel T, Vivoni, Enrique R, et al.
Created Date
2019

Deformation during hydration of concrete includes curling at joints and terminations. Previous research has explored mix designs, chemical additives, and other material factors to minimize slab distortion due to curling. This research study explores the development and use of externally applied silicone-based compounds after both the placing and cutting of joints. This exploratory study presents the results of controlled testing and a field study results that include distortion of contraction joints as measured with a Spectra LL300N under existing environmental conditions. Specifically, the study presents the results of a side-by-side test of two slabs, a base case, and a silicone-altered …

Contributors
Standage, Richard Mc Rae, Ernzen, James, Sullivan, Kenneth, et al.
Created Date
2019

The built environment is responsible for a significant portion of global waste generation. Construction and demolition (C&D) waste requires significant landfill areas and costs billions of dollars. New business models that reduce this waste may prove to be financially beneficial and generally more sustainable. One such model is referred to as the “Circular Economy” (CE), which promotes the efficient use of materials to minimize waste generation and raw material consumption. CE is achieved by maximizing the life of materials and components and by reclaiming the typically wasted value at the end of their life. This thesis identifies the potential opportunities …

Contributors
Aldaaja, Mohammad, El Asmar, Mounir, Buch, Rajesh, et al.
Created Date
2019

In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users …

Contributors
Ahmed, Ahmed Abdulrazzaq, Mays, Larry W, Fox, Peter, et al.
Created Date
2019

The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To promote ACMs, the Federal Highway Administration and the National Cooperative Highway Research Program (NCRHP) have published ACM guidance documents. However, the published material and research tend to focus on pre-award activities. The need for guidance on ACM post-award activities is confirmed in NCHRP’s request for a guidebook focusing on ACM …

Contributors
Papajohn, Dean, El Asmar, Mounir, Gibson, G. Edward, et al.
Created Date
2019

Planning efforts conducted during the early stages of a construction project, known as front end planning (FEP), have a large impact on project success and significant influence on the configuration of the final project. As a key component of FEP, front end engineering design (FEED) plays an essential role in the overall success of large industrial projects. The primary objective of this dissertation focuses on FEED maturity and accuracy and its impact on project performance. The author was a member of the Construction Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED Maturity and Accuracy …

Contributors
Yussef, Abdulrahman, Gibson, Jr., G. Edward, El Asmar, Mounir, et al.
Created Date
2019

A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as …

Contributors
Kianmofrad, Farrokh, Mobasher, Barzin, Rajan, Subramaniam Dharma, et al.
Created Date
2018

One of the two objectives of this dissertation is an investigation into the possible correlation between rainfall events and increased levels of E. coli and Mycobacterium using an existing data set. The literature states that levels of microbial concentrations do increase after rainfall events, but there are no studies to indicate this correlation applies in any Arizona water systems. The data analyzed for the bacterial concentrations project suggested the possibility of a correlation along one river but it is not conclusive to state that any correlation exists between rainfall events and the microbial concentration for many other sites included in …

Contributors
Buell, Andrew, Fox, Peter, Abbaszadegan, Morteza, et al.
Created Date
2018

With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover, certain soils are prone to liquefaction during an earthquake, which results in significant structural damage and loss of lives. While various soil treatment methods have been developed in the past to improve the soil’s load carrying ability, most of these traditional treatment methods have been found either hazardous and may …

Contributors
Yang, Pu, Neithalath, Narayanan, Kavazanjian, Edward, et al.
Created Date
2018

The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil. This thesis investigates the application of EICP in a soil collected from …

Contributors
Ross, Johnathan, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2018

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses …

Contributors
Feghaly, Jeffrey, El Asmar, Mounir, Ariaratnam, Samuel, et al.
Created Date
2018

A large portion of the United States is known to have problematic expansive clay soil. These expansive clay soils can cause damage to major infrastructures such as roads and lightly loaded residential buildings. The shrinking or swelling potential of unsaturated expansive clay soils requires an understanding of unsaturated soil mechanics, such as matric suction profile and the site’s environmental condition, such as climate. In unsaturated soil engineering, the most used climatic parameter is Thornthwaite Moisture Index (TMI). Since its inception, there have been several versions of TMI models in the literature. Historically, TMI is used to predict suction parameters such …

Contributors
Singhar, Sai, Houston, Sandra, Zapata, Claudia, et al.
Created Date
2018

Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about how infrastructure can be made more agile and flexible towards improved adaptive capacity. A literature review identified approximately fifty examples of novel infrastructure and technologies which support adaptivity through one or more of ten theoretical competencies of adaptive infrastructure. From these examples emerged several infrastructure forms and possible strategies for …

Contributors
Gilrein, Erica, Chester, Mikhail, Garcia, Margaret, et al.
Created Date
2018

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others. The current study focuses on the fundamental understanding of such functional composites, from their microstructural design …

Contributors
Arora, Aashay, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk …

Contributors
Kim, Yeowon, Chester, Mikhail, Eakin, Hallie, et al.
Created Date
2018

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the …

Contributors
Gundla, Akshay, Underwood, Benjamin S, Kaloush, Kamil E, et al.
Created Date
2018

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier known as Reacted and Activated Rubber (RAR) is one such technology. RAR (industrially known as “RARX”) acts like an Enhanced Elastomeric Asphalt Extender to improve the engineering properties of the …

Contributors
Shah, Janak, Kaloush, Kamil E, Mamlouk, Michael, et al.
Created Date
2018

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were …

Contributors
Burillo, Daniel, Chester, Mikhail V, Ruddell, Benjamin, et al.
Created Date
2018

The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions should be a priority. Therefore, in this dissertation, this research examine the relationship between carbon emissions and the factors affecting them from macro and micro perspectives. From a macroscopic perspective, the relationship between carbon dioxide, energy resource consumption, energy prices, GDP (gross domestic product), waste generation, and recycling waste generation …

Contributors
Lee, Seungtaek, Chong, Oswald, Sullivan, Kenneth, et al.
Created Date
2018

Laterally-loaded short rigid drilled shaft foundations are the primary foundation used within the electric power transmission line industry. Performance of these laterally loaded foundations is dependent on modulus of the subsurface, which is directly measured by the Pressuremeter (PMT). The PMT test provides the lateral shear modulus at intermediate strains, an equivalent elastic modulus for lateral loading, which mimics the reaction of transmission line foundations within the elastic range of motion. The PMT test, however, is expensive to conduct and rarely performed. Correlations of PMT to blow counts and other index properties have been developed but these correlations have high …

Contributors
Evans, Ashley Elizabeth, Houston, Sandra, Zapata, Claudia, et al.
Created Date
2018

Electrospinning is a means of fabricating micron-scale diameter fiber networks with enmeshed nanomaterials. Polymeric nanocomposites for water treatment require the manipulation of fiber morphology to expose nanomaterial surface area while anchoring the nanomaterials and maintaining fiber integrity; that is the overarching goal of this dissertation. The first investigation studied the effect of metal oxide nanomaterial loadings on electrospinning process parameters such as critical voltage, viscosity, fiber diameter, and nanomaterial distribution. Increases in nanomaterial loading below 5% (w/v) were not found to affect critical voltage or fiber diameter. Nanomaterial dispersion was conserved throughout the process. Arsenic adsorption tests determined that the …

Contributors
Hoogesteijn von Reitzenstein, Natalia Virginia, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2018

Implementing Building Information Modeling (BIM) in construction projects has many potential benefits, but issues of projects can hinder its realization in practice. Although BIM involves using the technology, more than four-fifths of the recurring issues in current BIM-based construction projects are related to the people and processes (i.e., the non-technological elements of BIM). Therefore, in addition to the technological skills required for using BIM, educators should also prepare university graduates with the non-technological skills required for managing the people and processes of BIM. This research’s objective is to develop a learning module that teaches the non-technological skills for addressing common, …

Contributors
Abdul Rahman, Abdul Rahimi Bin, Ayer, Steven K, Tang, Pingbo, et al.
Created Date
2018

Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly …

Contributors
Mahmoudi, Monirehalsadat, Zhou, Xuesong, Mirchandani, Pitu B, et al.
Created Date
2018

Use of Recycled Asphalt Pavement (RAP) in newly designed asphalt mixtures is becoming a common practice. Depending on the percentage of RAP, the stiffness of the hot mix asphalt (HMA) increases by incorporating RAP in mixes. In a climatic area such as the City of Phoenix, RAP properties are expected to be more oxidized and aged compared to other regions across the US. Therefore, there are concerns about the cracking behavior and long-term performance of asphalt mixes with high percentage of RAP. The use of Organosilane (OS) in this study was hypothesized to reduce the additional cracking potential and improve …

Contributors
Kaligotla, Phani Sasank, Kaloush, Kamil, Mamlouk, Michael, et al.
Created Date
2018

Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind. In the case of polymeric fibers, due to hydrophobicity and lack of any chemical bond between the fiber and matrix, the weak interface zone limits the ability of the fibers to effectively carry the load that is on the matrix phase. Depending on the fiber’s surface asperity, shape, chemical nature, …

Contributors
Tiwari, Sanchay Sushil, Mobasher, Barzin, Neithalath, Narayanan, et al.
Created Date
2018

Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: …

Contributors
Eisenberg, Daniel Alexander, Seager, Thomas P., Park, Jeryang, et al.
Created Date
2018

Road networks are valuable assets that deteriorate over time and need to be preserved to an acceptable service level. Pavement management systems and pavement condition assessment have been implemented widely to routinely evaluate the condition of the road network, and to make recommendations for maintenance and rehabilitation in due time and manner. The problem with current practices is that pavement evaluation requires qualified raters to carry out manual pavement condition surveys, which can be labor intensive and time consuming. Advances in computing capabilities, image processing and sensing technologies has permitted the development of vehicles equipped with such technologies to assess …

Contributors
Medina Campillo, Jose Roberto, Kaloush, Kamil E, Underwood, Benjamin S, et al.
Created Date
2018

Recent studies have identified that contractors in the Saudi construction industry are not the main party that cause risks as owners and other parties have the major share of causing risks. However, with the identification that risks out of contractors’ control are a leading cause of low performance, there is a lack of efficient risk mitigation practices in Saudi to manage these risks. The main aim of this dissertation is to assess the current practices applied by contractors to minimize risk out of their control and develop a risk mitigation model to manage these risks. The main objectives of the …

Contributors
Algahtany, Mohammed, Sullivan, Kenneth, Kashiwagi, Dean, et al.
Created Date
2018

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although the national trends in Reclaimed Asphalt Pavements (RAP) usage are encouraging, the environmental conditions in Phoenix, Arizona are extreme and needs further consideration. The objective of this research study was to evaluate the viability of using RAP in future pavement maintenance and rehabilitation projects for the City. Agencies in the …

Contributors
ARREDONDO, GONZALO ZELADA, Kaloush, Kamil E., Mamlouk, Michael, et al.
Created Date
2018

Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public transit systems provide high-quality ridesharing schedules/services and (2) the upcoming optimal activity planning systems offer the best vehicle routing and assignment for household daily scheduled activities. The high quality of system observability is the fundamental guarantee for accurately predicting and controlling the system. The rich information from the emerging heterogeneous …

Contributors
Liu, Jiangtao, Zhou, Xuesong, Pendyala, Ram, et al.
Created Date
2018

The Colorado River Basin (CRB) is the primary source of water in the southwestern United States. A key step to reduce the uncertainty of future streamflow projections in the CRB is to evaluate the performance of historical simulations of General Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five (CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle and temperature in the CRB. To capture the transition from snow-dominated to semiarid regions, analyses are conducted by …

Contributors
Gautam, Jenita, Mascaro, Giuseppe, Vivoni, Enrique, et al.
Created Date
2018

High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The industry and certifications are moving from using single attribute environmental information about building materials to lifecycle based information to inform their design decisions. This dissertation seeks to understand the current practices, and then focus on strategies to effectively utilize newer sources of environmental product information in high performance building design. …

Contributors
Burke, Rebekah, Parrish, Kristen, Gibson, G. Edward, et al.
Created Date
2018

This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special events. Its two major components, a distributed traffic monitoring and platoon information aggregation system and a platoon-based automated intersection control system, are investigated in this study. The distributed traffic monitoring and platoon information aggregation system serves as the foundation. Specifically, each equipped vehicle, through the distributed protocols developed, keeps track …

Contributors
Li, Peiheng, Lou, Yingyan, Zhou, Xuesong, et al.
Created Date
2017

Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies are not practical on typical projects due to the difficulties and duration needed for equilibration associated with the necessary laboratory testing. The current practice encompasses saturated “conventional” soil mechanics testing, with the implementation of numerous empirical correlations and approximations to obtain an estimate of true field response. However, it has been …

Contributors
Olaiz, Austin Hunter, Houston, Sandra, Zapata, Claudia, et al.
Created Date
2017

Many accidents occur during construction and maintenance of facilities. Both research and practice have demonstrated that decisions made during the design and planning phases before work at a construction site can influence workers’ safety. The Prevention through Design (PtD) concept is the consideration of construction site safety in the design of a project. In one research study, more than 200 fatality investigation reports were reviewed, and the results showed that 42 percent of fatalities reviewed were linked to the absence of the PtD concept (Behm, 2005). This work indicates that the associated risk that contributed to the incident would have …

Contributors
Din, Zia Ud, Gibson, Jr, G. Edward, Chasey, Allan D, et al.
Created Date
2017

Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; …

Contributors
Thirthar Palanivelu, Pugazhvel, Zapata, Claudia E, Kavazanjian, Edward, et al.
Created Date
2017

The higher education sector is always changing and seeks for robust methodologies to make education more effective and produce higher quality products which are the future professionals. While each student has different preference in learning, numerous forms of instructional strategies are adopted to engage students in varied ways. Existing literature has studied the impacts of various teaching strategies on students’ performance. Previous studies did not figure out if personal characteristics such as honestly, emotionality, etc. have any impacts on the students’ academic performance. This master thesis uses the detailed information gathered through surveying construction students and analyses such data to …

Contributors
Dadvar, Atefeh, Sullivan, Kenneth, Smithwick, Jake, et al.
Created Date
2017

Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events. In the field, construction information acquisition often involves three types of activities including sensor-based inspection, manual inspection, and communication. Human interventions play critical roles in these three types of field information acquisition activities. A resilient information acquisition system is needed for safer and more productive construction. The use of various automation technologies could help improve human performance by proactively providing the needed knowledge of using equipment, improve the situation awareness …

Contributors
Zhang, Cheng, Tang, Pingbo, Cooke, Nancy, et al.
Created Date
2017

This dissertation presents an investigation of calcium carbonate precipitation via hydrolysis of urea (ureolysis) catalyzed by plant-extracted urease enzyme for soil improvement. In this approach to soil improvement, referred to as enzyme induced carbonate precipitation (EICP), carbonate minerals are precipitated within the soil pores, cementing soil particles together and increasing the dilatancy of the soil. EICP is a bio-inspired solution to improving the properties of cohesionless soil in that no living organisms are engaged in the process, though it uses a biologically-derived material (urease enzyme). Over the past decade, research has commenced on biologically-mediated solutions like microbially induced carbonate precipitation …

Contributors
Almajed, Abdullah A., Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2017

Public construction projects in Saudi Arabia have been experiencing performance issues for the past 30 years. There have been many research efforts and publications identifying the problem and potential causes, however, there have been minimal efforts identifying how to mitigate the problem and testing to validate proposed solutions. A literature search has shown that the academic research has had minimal impact in assisting the construction industry to improve its performance. This dissertation aimed to evaluate the impact of construction management research in Saudi construction industry (SCI), and to investigate barriers that hinder the diffusion of implementing the research outcomes in …

Contributors
Alhammadi, Yasir, Kashiwagi, Dean, Badger, William, et al.
Created Date
2017

Research has shown that construction projects in Saudi Arabia have had a perceived poor performance for the past three decades, from 1970-2016. The Saudi construction industry relies on a Contractor Classification System (CCS) to determine contractors’ capabilities, and prevent underperformance. Through this study, a survey was conducted among persons involved in the Saudi Arabian construction industry to identify the perception of the performance of the Saudi Arabian construction industry, and the satisfaction with the CCS. The results of the survey showed that 71.59% of the participants agreed that the CCS does not accurately assess contractors’ capabilities for projects they are …

Contributors
Almutairi, Saud, Kashiwagi, Dean, Kashiwagi, Jacob, et al.
Created Date
2017

ABSTRACT The current Saudi Arabian (SA) procurement system leads to many losses in money and benefits in projects. Also, the use of the traditional procurement system in SA has been identified as one of the causes for poor performance in the delivery of construction and the major risk to the SA government. A questionnaire has been developed and carefully designed based on literature review. The purpose of the survey was to identify the validity of the recent claims that the procurement system in SA is broken and to improve the current SA procurement system. The questionnaire was sent out to …

Contributors
Alofi, Ahmed Abdulrahman, Kashiwagi, Dean, Sullivan, Kenneth, et al.
Created Date
2017

The objective of the study was to examine the impact construction document deficiencies have on heavy/civil low-bid infrastructure projects. It encompasses the expertise of 202 heavy/civil construction professionals comprised of contactors and public project owners. The study was designed to determine the frequency and timing of when a contractor discovers construction document deficiencies on heavy/civil low bid projects. The information was correlated with further study data of when a contractor ultimately reports the discovered construction document deficiencies to the public project owner. This research data was compiled and analyzed to determine if contractors are withholding construction document deficiencies from public …

Contributors
Pesek, Anthony Edward, Sullivan, Kenneth, Badger, William, et al.
Created Date
2017

Highway safety is a major priority for the public and for transportation agencies. Pavement distresses directly affect ride quality, and indirectly contribute to driver distraction, vehicle operation, and accidents. In this study, analysis was performed on highways in the states of Arizona, North Carolina and Maryland for years between 2013 and 2015 in order to investigate the relationship between accident rate and pavement roughness and rutting. Two main types of data were collected: crash data from the accident records and roughness and rut depth data from the pavement management system database in each state. Crash rates were calculated using the …

Contributors
Vinayakamurthy, Mounica, Mamlouk, Michael S, Underwood, Benjamin, et al.
Created Date
2017

The concept of Creep is a term used to define the tendency of stressed materials to develop an increasing strain through time under a sustained load, thus having an increase in deflection or having an elongation with time in relation to the short term strain. While the subject of compression creep of concrete is well developed, use of concrete under tension loads has been limited at best due to brittleness of concrete. However with the advent of using fiber reinforced concrete, more and more applications where concrete is expected to carry tensile loads due to incorporation of fibers is gaining …

Contributors
Gohel, Megha Rajendrakumar, Mobasher, Barzin, Dharmarajan, Subramaniam, et al.
Created Date
2017

Civil infrastructures undergo frequent spatial changes such as deviations between as-designed model and as-is condition, rigid body motions of the structure, and deformations of individual elements of the structure, etc. These spatial changes can occur during the design phase, the construction phase, or during the service life of a structure. Inability to accurately detect and analyze the impact of such changes may miss opportunities for early detections of pending structural integrity and stability issues. Commercial Building Information Modeling (BIM) tools could hardly track differences between as-designed and as-built conditions as they mainly focus on design changes and rely on project …

Contributors
KALASAPUDI, VAMSI SAI, TANG, PINGBO, CHONG, OSWALD, et al.
Created Date
2017

Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These advantages introduce textile reinforced concrete (TRC) composites as a potential surrogate for wood, light gauge steel, and other common structural materials into an ever changing and broadening market of industrial grade structural sections. With the potential modifications of textile geometry, textile type, section geometry, and connection type, the options presented …

Contributors
Bauchmoyer, Jacob MacGregor, Mobasher, Barzin, Rajan, Subramaniam, et al.
Created Date
2017

The main objective of this study is to investigate the effect of polypropylene fiber morphology on the tensile response of cementitious composites. Two proprietary polypropylene fibers manufactured by BASF – MAC 2200CB, a crimped monofilament macro fiber and MF40, a bundled multi filament polypropylene made up of 500 filaments,40-micron diameter each were compared. The stiff structure and crimped geometry of MAC 2200 CB was studied in comparison with the multifilament MF40, which provide a higher surface area and a bundled fiber effect. Uniaxial tensile tests were performed on individual fibers to study fiber strength and failure pattern at three different …

Contributors
Mehere, Himai Ashok, Mobasher, Barzin, Dharmarajan, Subramaniam, et al.
Created Date
2017

The geotechnical community typically relies on recommendations made from numerical simulations. Commercial software exhibits (local) numerical instabilities in layered soils across soil interfaces. This research work investigates unsaturated moisture flow in layered soils and identifies a possible source of numerical instabilities across soil interfaces and potential improvement in numerical schemes for solving the Richards' equation. The numerical issue at soil interfaces is addressed by a (nonlinear) interface problem. A full analysis of the simplest soil hydraulic model, the Gardner model, identifies the conditions of ill-posedness of the interface problem. Numerical experiments on various (more advanced and practical) soil hydraulic models …

Contributors
Liu, Ruowen, Welfert, Bruno D, Houston, Sandra L, et al.
Created Date
2017

Emerging information and communication technology (ICT) has had an enormous effect on the building architecture, engineering, construction and operation (AECO) fields in recent decades. The effects have resonated in several disciplines, such as project information flow, design representation and communication, and Building Information Modeling (BIM) approaches. However, these effects can potentially impact communication and coordination of the virtual design contents in both design and construction phases. Therefore, and with the great potential for emerging technologies in construction projects, it is essential to understand how these technologies influence virtual design information within the organizations as well as individuals’ behaviors. This research …

Contributors
Alsafouri, Suleiman, Ayer, Steven, Tang, Pingbo, et al.
Created Date
2017

The performance of the Alpha Sprayed Polyurethane Foam (SPF) roofing system is perceived as not an economical option when compared to a 20-year modified bitumen roofing system. Today, the majority of roofs are being replaced, rather than newly installed. The coating manufacturer, Neogard, implemented the Alpha roofing program to identify the best contractors in the industry and to measure their roof performance. The Alpha roof system has shown consistent high performance on over 230 million square feet of surveyed roof. The author proposes to identify if the Alpha roof system is renewable, has proven performance that competes with the traditional …

Contributors
Zulanas IV, Charles Joseph, Kashiwagi, Dean T, Kashiwagi, Jacob S, et al.
Created Date
2017

The resilience of infrastructure essential to public health, safety, and well-being remains a priority among Federal agencies and institutions. National policies and guidelines enacted by these entities call for a holistic approach to resilience and effectively acknowledge the complex, multi-organizational, and socio-technical integration of critical infrastructure. However, the concept of holism is seldom discussed in literature. As a result, resilience knowledge among disciplines resides in near isolation, inhibiting opportunities for collaboration and offering partial solutions to complex problems. Furthermore, there is limited knowledge about how human resilience and the capacity to develop and comprehend increasing levels of complexity can influence, …

Contributors
Thomas, John E., Seager, Thomas P, Clark, Susan, et al.
Created Date
2017

Sustainable materials and methods have achieved a pivotal role in the research plethora of the new age due to global warming. Cement production is responsible in contributing to 5% of global CO2 emissions. Complete replacement of cement by alkaline activation of aluminosilicate waste materials such as slag and fly ash is a major advancement towards reducing the adverse impacts of cement production. Comprehensive research has been done, to understand the optimized composition and hydration products. The focus of this dissertation is to understand the multiscale behavior ranging from early age properties, fundamental material structure, fracture and crack resistance properties, durability …

Contributors
Dakhane, Akash, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

Concern and interest about the environment and ecologic systems have promoted the usage of earth as a construction material. Technology advancement has resulted in the evolution of adobe into compressed stabilized earth blocks (CSEB). CSEB’s are prepared by compressing the soil-stabilizer mixture at a particular stress. In order to accomplish the required strength, cement has been used in a regular basis as stabilizing agent. It is of interest to find means to reduce the cement used in their construction without affecting its dry strength and durability. In this study, natural fibers were used along with lower proportions of cement to …

Contributors
Padmini Chikke Gowda, Rakshith, Zapata, Claudia, Kavazanjian, Edward, et al.
Created Date
2016

In this era of high-tech computer advancements and tremendous programmable computer capabilities, construction cost estimation still remains a knowledge-intensive and experience driven task. High reliance on human expertise, and less accuracy in the decision support tools render cost estimation error prone. Arriving at accurate cost estimates is of paramount importance because it forms the basis of most of the financial, design, and executive decisions concerning the project at subsequent stages. As its unique contribution to the body of knowledge, this paper analyzes the deviations and behavior of costs associated with different construction activities involved in commercial office tenant improvement (TI) …

Contributors
Ghosh, Arunabho, Grau, David, Ayer, Steven, et al.
Created Date
2016

ABSTRACT This study examines the methodology for converting protected, permissive, and protected/permissive left-turn operation to flashing yellow arrow left-turn operation. This study addresses construction-related considerations, including negative offsets, lateral traffic signal head position, left-turn accident rates, crash modification factors and crash reductions factors. A total of 85 intersections in Glendale, Arizona were chosen for this study. These intersections included 45 “arterial to arterial” intersections (a major road intersecting with a major road) and 40 “arterial to collector” intersections (a major road intersecting with a minor road). This thesis is a clinical study of the field conversion to flashing yellow arrow …

Contributors
Chambers, Susan Elizabeth, Kaloush, Kamil, Mamlouk, Michael, et al.
Created Date
2016

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly …

Contributors
Zheng, Xianglei, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in the last decade alone. This dissertation concentrates on design optimization of such, about-to-be modular, structures by implementing AISC 2010 design requirements. Along with a discussion on and classification of lateral load resisting systems, a few design optimization cases are also being studied. The design optimization results of full scale three …

Contributors
Unde, Yogesh Vinod, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

Research has shown roofing systems with high solar reflectance and thermal emissivity lead to less heat absorption, a consequential reduction in cooling load demand, and a resultant reduction on energy expenditure. Studies on energy savings from cool roof coatings have been conducted for decades and when compared to more traditional roofing systems have demonstrated energy savings ranging from 2-40%, with average savings estimated at 20%. The 20% average is widely used by cool roof industry professionals, designers, and contractors to market and sell the technology in the commercial sector to owners and owner representatives researching new roofs. While the 20% …

Contributors
Haverstic, Preston Todd, Sullivan, Kenneth, Okamura, Patrick, et al.
Created Date
2016

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such …

Contributors
Schmidt, Nathan William, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic …

Contributors
Hoffarth, Canio, Rajan, Subramaniam, Goldberg, Robert, et al.
Created Date
2016

With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of transit trips, there is a lack of understanding on this topic. This research aims to comprehensively evaluate the life cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is evaluated by using a comprehensive …

Contributors
Hoehne, Christopher Glenn, Chester, Mikhail V, Salon, Deborah, et al.
Created Date
2016

A series of experiments were conducted to support validation of a numerical model for the performance of geomembrane liners subject to waste settlement and seismic loading. These experiments included large scale centrifuge model testing of a geomembrane-lined landfill, small scale laboratory testing to get the relevant properties of the materials used in the large scale centrifuge model, and tensile tests on seamed geomembrane coupons. The landfill model in the large scale centrifuge test was built with a cemented sand base, a thin film NafionTM geomembrane liner, and a mixture of sand and peat for model waste. The centrifuge model was …

Contributors
Gutierrez, Angel, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2016

The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments. In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments are explored to obtain fitting parameters for semi-empirical equations. Second, immiscible fluid invasion into porous media is investigated to identify fluid displacement pattern and displacement efficiency that are affected by pore size distribution and connectivity. Finally, fluid flow through granular media is studied to obtain fluid-particle interaction. This study utilizes …

Contributors
MAHABADI, NARIMAN, Jang, Jaewon, Zapata, Claudia, et al.
Created Date
2016

Energy use within urban building stocks is continuing to increase globally as populations expand and access to electricity improves. This projected increase in demand could require deployment of new generation capacity, but there is potential to offset some of this demand through modification of the buildings themselves. Building stocks are quasi-permanent infrastructures which have enduring influence on urban energy consumption, and research is needed to understand: 1) how development patterns constrain energy use decisions and 2) how cities can achieve energy and environmental goals given the constraints of the stock. This requires a thorough evaluation of both the growth of …

Contributors
Reyna, Janet Lorel, Chester, Mikhail V, Gurney, Kevin, et al.
Created Date
2016

Most engineers may agree that an optimum design of a particular structure is a proposal that minimizes costs without compromising resistance, serviceability and aesthetics. Additionally to these conditions, the theory and application of the method that produces such an efficient design must be easy and fast to apply at the structural engineering offices. A considerable amount of studies have been conducted for the past four decades. Most researchers have used constraints and tried to minimize the cost of the structure by reducing the weight of it [8]. Although this approach may be true for steel structures, it is not accurate …

Contributors
Raudales, Eduardo Rene, Fafitis, Apostolos, Zapata, Claudia, et al.
Created Date
2016

The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been …

Contributors
O'Donnell, Sean Thomas, Kavazanjian, Edward, Rittmann, Bruce, et al.
Created Date
2016

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual maintenance and rehabilitation strategies to their road network. The objective of the work in this study was to develop a methodology to evaluate and predict pavement roughness over the pavement service life. Unlike previous studies, a unique aspect of this work was the use of non-linear mathematical function, sigmoidal growth …

Contributors
Beckley, Michelle Elizabeth, Kaloush, Kamil E, Underwood, Benjamin S, et al.
Created Date
2016

Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In an ever-increasing competitive industry landscape, the need to deliver projects within technical, budgetary, and schedule requirements becomes imperative to sustain a healthy return on investment for the project stakeholders. The fact that information lags within the capital projects industry has motivated this research to find practices and solutions that facilitate Instantaneous Project Controls (IPC). The author …

Contributors
Abbaszadegan, Amin, Grau Torrent, David, El Asmar, Mounir, et al.
Created Date
2016

All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this …

Contributors
Kim, Inho, Chattopadhyay, Aditi, Jiang, Hanqing, et al.
Created Date
2016

Entering a new market in the construction industry is a complex task. Although many contractors have experienced the benefits of expanding their market offerings, many more have had unsuccessful experiences causing hardship for the entire organization. Standardized decision-making processes can help to increase the likelihood of success, but few specialty contractors have taken the time to develop a formal procedure. According to this research, only 6 percent of survey respondents and 7 percent of case study participants from the sheet metal industry have a formal decision process. Five sources of data (existing literature, industry survey, semi-structured interviews, factor prioritization workshops, …

Contributors
Sullivan, Jera Jo, El Asmar, Mounir, Gibson, G Edward, et al.
Created Date
2016

The major challenge for any pavement is the freight transport carried by the structure. This challenge is expected to increase in the coming years as freight movements are projected to grow and because these movements account for most of the load related distresses for the pavement. Substantial effort has been devoted to identifying the impacts of these future national freight trends with respect to the environment, economic growth, congestion, and reliability. These are all important aspects relating to the freight question, but an equally important and often overlooked aspect of this issue involves the impact of freight trends on the …

Contributors
Nagarajan, Sathish Kannan, Underwood, Shane, Kaloush, Kamil, et al.
Created Date
2016

Transportation systems in the U.S. are in a poor state of disrepair. A significant investment is needed to replace or rehabilitate current transportation infrastructure. Currently, transportation investments are lackluster with the recession of 2008 heavily impacting transportation spending, inciting deficits and budgetary cuts at state and federal government levels. As a result, policy makers and public officials are increasingly looking for innovative financing and alternative delivery methods to supplement traditional financing and delivery for transportation projects. Subsequently, the number of public-private partnerships (PPP or P3) has increased substantially over the last two decades. There is a growing need to quantify …

Contributors
Ramsey, David Wayne, El Asmar, Mounir, Kaloush, Kamil, et al.
Created Date
2016

This study employs a finite element method based modeling of cementitious composite microstructure to study the effect of presence of inclusions on the stress distribution and the constitutive response of the composite. A randomized periodic microstructure combined with periodic boundary conditions forms the base of the finite element models. Inclusion properties of quartz and light weight aggregates of size 600μm obtained from literature were made use of to study the effect of their material (including inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and geometric properties (volume fraction of inclusion, particle size distribution of inclusion and thickness of …

Contributors
Maroli, Amit, Neithalath, Narayanan, Rajan, Subramanium, et al.
Created Date
2016

The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in …

Contributors
Dey, Vikram, Mobasher, Barzin, Rajan, Subramaniam D., et al.
Created Date
2016

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems. The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were …

Contributors
Inbasekaran, Aditya, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

Bioretention basins are a common stormwater best management practice (BMP) used to mitigate the hydrologic consequences of urbanization. Dry wells, also known as vadose-zone wells, have been used extensively in bioretention basins in Maricopa County, Arizona to decrease total drain time and recharge groundwater. A mixed integer nonlinear programming (MINLP) model has been developed for the minimum cost design of bioretention basins with dry wells. The model developed simultaneously determines the peak stormwater inflow from watershed parameters and optimizes the size of the basin and the number and depth of dry wells based on infiltration, evapotranspiration (ET), and dry well …

Contributors
Lacy, Mason Lacy, Mays, Larry W, Fox, Peter, et al.
Created Date
2016

Crack sealing is considered one of the least expensive and cost effective maintenance activity used on pavements. In some cases, crack sealing suffers from premature failure due to various material, environmental, and construction issues. A survey that was conducted as part of this study showed that the highest sealant failure year occurring on the second year. Therefore, any attempt to increase the sealants’ service life by addressing and improving the sealant properties and their resistance to failure will benefit the effectiveness of this treatment. The goal behind this study was to evaluate the potential improvement in performance of hot applied …

Contributors
Thwaini, Talal, Kaloush, Kamil E., Mamlouk, Michael S., et al.
Created Date
2016

This study examines the outcomes of roundabouts in the State of Arizona. Two types of roundabouts are introduced in this study, single-lane roundabouts and double-lane roundabouts. A total of 17 roundabouts across Arizona were chosen upon several selection criteria and according to the availability of data for roundabouts in Arizona. Government officials and local cities’ personnel were involved in this work in order to achieve the most accurate results possible. This thesis focused mainly on the impact of roundabouts on the accident rates, accident severities, and any specific trends that could have been found. Scottsdale, Sedona, Phoenix, Prescott, and Cottonwood …

Contributors
Souliman, Beshoy, Mamlouk, Michael, Kaloush, Kamil, et al.
Created Date
2016

The increasingly recurrent extraordinary flood events in the metropolitan area of Monterrey, Mexico have led to significant stakeholder interest in understanding the hydrologic response of the Santa Catarina watershed to extreme events. This study analyzes a flood mitigation strategy proposed by stakeholders through a participatory workshop and are assessed using two hydrological models: The Hydrological Modeling System (HEC-HMS) and the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). The stakeholder-derived flood mitigation strategy consists of placing new hydraulic infrastructure in addition to the current flood controls in the basin. This is done by simulating three scenarios: (1) evaluate the …

Contributors
Cazares-Rodriguez, Jorge, Vivoni, Enrique, Wang, Zhihua, et al.
Created Date
2016

ABSTRACT The objective of this dissertation is to identify a recommended balance between leadership and management activities of a project manager who aims to rehabilitate a distressed construction project. The data for this research was collected from 338 construction project professionals belonging to fifteen large construction companies who participated in leadership seminars originated by professors from Arizona State University. The seminars contained various leadership games and exercises that were designed specifically to collect data about leadership and management actions taken by the project managers. The data from one of the games, called “Project from Hell” (PFH), was used in this …

Contributors
Behzad, Navid, Wiezel, Avi, Gibson, Jr., G. Edward, et al.
Created Date
2016

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC …

Contributors
Gudipudi, Padmini Priyadarsini, Underwood, Benjamin S, Kaloush, Kamil, et al.
Created Date
2016

Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater compared to existing sorbents?” Preliminary nano-composite sorbents outperformed existing sorbents in equilibrium tests, but struggled in packed bed applications and at low influent concentrations. The synthesis process was then tailored for weak base anion exchange (WBAX) while comparing titanium dioxide against iron hydroxide nanoparticles (Ti-WBAX and Fe-WBAX, …

Contributors
Gifford, James McKay, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2016

Much of the water and wastewater lines in the United States are nearing the end of their useful life. A significant reinvestment is needed in the upcoming decades to replace or rehabilitate the water and wastewater infrastructure. Currently, the traditional method for delivering water and wastewater pipeline engineering and construction projects is design-bid-build (DBB). The traditional DBB delivery system is a sequential low-integration process and can lead to inefficiencies and adverse relationships between stakeholders. Alternative project delivery methods (APDM) such as Construction Manager at Risk (CMAR) have been introduced to increase stakeholder integration and ultimately enhance project performance. CMAR project …

Contributors
Francom, Tober, Ariaratnam, Samuel, El Asmar, Mounir, et al.
Created Date
2015

The influence of temperature on soil engineering properties is a major concern in the design of engineering systems such as radioactive waste disposal barriers, ground source heat pump systems and pavement structures. In particular, moisture redistribution under pavement systems might lead to changes in unbound material stiffness that will affect pavement performance. Accurate measurement of thermal effects on unsaturated soil hydraulic properties may lead to reduction in design and construction costs. This thesis presents preliminary results of an experimental study aimed at determining the effect of temperature on the soil water characteristic curve (SWCC) and the unsaturated hydraulic conductivity function …

Contributors
LU, YUTONG, Zapata, Claudia E, Kavazanjian, Edward, et al.
Created Date
2015

The accurate prediction of pavement network condition and performance is important for efficient management of the transportation infrastructure system. By reducing the error of the pavement deterioration prediction, agencies can save budgets significantly through timely intervention and accurate planning. The objective of this research study was to develop a methodology for calculating a pavement condition index (PCI) based on historical distress data collected in the databases from Long-Term Pavement Performance (LTPP) program and Minnesota Road Research (Mn/ROAD) project. Excel™ templates were developed and successfully used to import distress data from both databases and directly calculate PCIs for test sections. Pavement …

Contributors
Wu, Kan, Kaloush, Kamil E, Zhou, Xuesong, et al.
Created Date
2015

In the burgeoning field of sustainability, there is a pressing need for healthcare to understand the increased environmental and economic impact of healthcare products and services. The overall aim of this dissertation is to assess the sustainability of commonly used medical products, devices, and services as well as to identify strategies for making easy, low cost changes that result in environmental and economic savings for healthcare systems. Life cycle environmental assessments (LCAs) and life cycle costing assessments (LCCAs) will be used to quantitatively evaluate life-cycle scenarios for commonly utilized products, devices, and services. This dissertation will focus on several strategic …

Contributors
Unger, Scott, Landis, Amy E, Bilec, Melissa, et al.
Created Date
2015

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of …

Contributors
Chokor, Abbas, El Asmar, Mounir, Chong, Oswald, et al.
Created Date
2015

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate. In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion …

Contributors
Khatavkar, Puneet Nandkumar, Mays, Larry W, Fox, Peter, et al.
Created Date
2015

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in the evolution and stability of congested traffic. At merges, drivers from conflicting traffic branches take turns to merge into a single stream at a rate referred to as the “merge ratio”. In this research, data from several freeway merges was used to evaluate existing macroscopic merge models and theoretical principles …

Contributors
Reina, Paulina, Ahn, Soyoung, Pendyala, Ram, et al.
Created Date
2015

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum. Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability …

Contributors
Antaya, Claire Louise, Landis, Amy E, Parrish, Kristen, et al.
Created Date
2015