Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil. This thesis investigates the application of EICP in a soil collected from …

Contributors
Ross, Johnathan, Kavazanjian, Edward, Zapata, Claudia, et al.
Created Date
2018

Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic conditions, and potentially has a greater carbonate yield per mole of organic electron donor than other MICP processes. Denitrification may be preferable to ureolytic hydrolysis, the MICP process explored most extensively to date, as the byproduct of denitrification is benign nitrogen gas, while the chemical pathways involved in hydrolytic ureolysis …

Contributors
Hamdan, Nasser, Kavazanjian, Edward, Rittmann, Bruce E, et al.
Created Date
2013