Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Subject
Date Range
2010 2019


Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, <i>Anolis …

Contributors
Hutchins, Elizabeth, Kusumi, Kenro, Rawls, Jeffrey A., et al.
Created Date
2015

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of …

Contributors
Torres Garcia, Wandaliz, Meldrum, Deirdre R., Runger, George C., et al.
Created Date
2011

No two cancers are alike. Cancer is a dynamic and heterogeneous disease, such heterogeneity arise among patients with the same cancer type, among cancer cells within the same individual’s tumor and even among cells within the same sub-clone over time. The recent application of next-generation sequencing and precision medicine techniques is the driving force to uncover the complexity of cancer and the best clinical practice. The core concept of precision medicine is to move away from crowd-based, best-for-most treatment and take individual variability into account when optimizing the prevention and treatment strategies. Next-generation sequencing is the method to sift through …

Contributors
Peng, Sen, Dinu, Valentin, Scotch, Matthew, et al.
Created Date
2015

The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins, which are evolutionarily conserved across all phyla of the animal kingdom. WNT ligands interact most commonly with a family of receptors known as frizzled (FZ) receptors, composed of 10 independent genes. Specific interactions between WNT proteins and FZ receptors are not well characterized and are known to be promiscuous, Traditionally …

Contributors
Cutts, Joshua Patrick, Brafman, David A, Stabenfeldt, Sarah, et al.
Created Date
2019

Accounting for over a third of all emerging and re-emerging infections, viruses represent a major public health threat, which researchers and epidemiologists across the world have been attempting to contain for decades. Recently, genomics-based surveillance of viruses through methods such as virus phylogeography has grown into a popular tool for infectious disease monitoring. When conducting such surveillance studies, researchers need to manually retrieve geographic metadata denoting the location of infected host (LOIH) of viruses from public sequence databases such as GenBank and any publication related to their study. The large volume of semi-structured and unstructured information that must be reviewed …

Contributors
Tahsin, Tasnia, Gonzalez, Graciela, Scotch, Matthew, et al.
Created Date
2019

Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their genome. To understand cancer prevention patterns across species, I developed a bioinformatic pipeline to identify copies of 545 known tumor suppressor genes and oncogenes across 63 species of mammals. I used phylogenetic regressions to test for associations between cancer gene copy numbers and a species’ life history. I found a …

Contributors
Schneider-Utaka, Aika Kunigunda, Maley, Carlo C, Wilson, Melissa A, et al.
Created Date
2019

Major Depression, clinically called Major Depressive Disorder, is a mood disorder that affects about one eighth of population in US and is projected to be the second leading cause of disability in the world by the year 2020. Recent advances in biotechnology have enabled us to collect a great variety of data which could potentially offer us a deeper understanding of the disorder as well as advancing personalized medicine. This dissertation focuses on developing methods for three different aspects of predictive analytics related to the disorder: automatic diagnosis, prognosis, and prediction of long-term treatment outcome. The data used for each …

Contributors
Nie, Zhi, Ye, Jieping, He, Jingrui, et al.
Created Date
2017

The recent technological advances enable the collection of various complex, heterogeneous and high-dimensional data in biomedical domains. The increasing availability of the high-dimensional biomedical data creates the needs of new machine learning models for effective data analysis and knowledge discovery. This dissertation introduces several unsupervised and supervised methods to help understand the data, discover the patterns and improve the decision making. All the proposed methods can generalize to other industrial fields. The first topic of this dissertation focuses on the data clustering. Data clustering is often the first step for analyzing a dataset without the label information. Clustering high-dimensional data …

Contributors
Lin, Sangdi, Runger, George C, Kocher, Jean-Pierre A, et al.
Created Date
2018

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more …

Contributors
Szelinger, Szabolcs, Craig, David W, Kusumi, Kenro, et al.
Created Date
2015

Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to …

Contributors
Gaw, Nathan, Li, Jing, Wu, Teresa, et al.
Created Date
2019