Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of …

Lv, Cheng, Jiang, Hanqing, Yu, Hongbin, et al.
Created Date

This dissertation will investigate two of the most promising high-capacity anode materials for lithium-based batteries: silicon (Si) and metal lithium (Li). It will focus on studying the mechanical behaviors of the two materials during charge and discharge and understanding how these mechanical behaviors may affect their electrochemical performance. In the first part, amorphous Si anode will be studied. Despite many existing studies on silicon (Si) anodes for lithium ion batteries (LIBs), many essential questions still exist on compound formation, composition, and properties. Here it is shown that some previously accepted findings do not truthfully reflect the actual lithiation mechanisms in …

Wang, Xu, Jiang, Hanqing, Yu, Hongbin, et al.
Created Date