Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information. A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single …

Contributors
Freitas, Scott, Tong, Hanghang, Maciejewski, Ross, et al.
Created Date
2018

Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure networks, multi-platform social networks, cross-domain collaboration networks, and many more. Compared with single-sourced network, multi-sourced networks bear more complex structures and therefore could potentially contain more valuable information. This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algorithm to perform the ranking task on multi-sourced networks. Specifically, each node in …

Contributors
Yu, Haichao, Tong, Hanghang, He, Jingrui, et al.
Created Date
2018