Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

A new method of adaptive mesh generation for the computation of fluid flows is investigated. The method utilizes gradients of the flow solution to adapt the size and stretching of elements or volumes in the computational mesh as is commonly done in the conventional Hessian approach. However, in the new method, higher-order gradients are used in place of the Hessian. The method is applied to the finite element solution of the incompressible Navier-Stokes equations on model problems. Results indicate that a significant efficiency benefit is realized. Dissertation/Thesis

Shortridge, Randall Raymond, Chen, Kang Ping, Herrmann, Marcus, et al.
Created Date

Pseudo-steady state (PSS) flow is an important time-dependent flow regime that quickly follows the initial transient flow regime in the constant-rate production of a closed boundary hydrocarbon reservoir. The characterization of the PSS flow regime is of importance in describing the reservoir pressure distribution as well as the productivity index (PI) of the flow regime. The PI describes the production potential of the well and is often used in fracture optimization and production-rate decline analysis. In 2016, Chen determined the exact analytical solution for PSS flow of a fully penetrated vertically fractured well with finite fracture conductivity for reservoirs of …

Sharma, Ankush, Chen, Kang Ping, Green, Matthew D, et al.
Created Date