Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

In the past decade, real-world applications of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles (UAV) have increased significantly. There has been growing interest in one of these types of UAVs, called a tail-sitter UAV, due to its VTOL and cruise capabilities. This thesis presents the fabrication of a spherical tail-sitter UAV and derives a nonlinear mathematical model of its dynamics. The singularity in the attitude kinematics of the vehicle is avoided using Modified Rodrigues Parameters (MRP). The model parameters of the fabricated vehicle are calculated using the bifilar pendulum method, a motor stand, and ANSYS simulation software. Then the …

Ramasubramaniyan, Sri Ram Prasath, Berman, Spring M, Mignolet, Marc P, et al.
Created Date

This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to …

Sridharan, Srikanth, Rodriguez, Armando A, Mittelmann, Hans D, et al.
Created Date