Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Zwitterionic polymers, due to their supurior capability of electrostatically induced hydration, have been considered as effective functionalities to alleviate bio-fouling of reverse osmosis (RO) membranes. Bulk modification of polysulfone-based matrices to improve hydrophilicity, on the other hand, is favored due to the high membrane performance, processibility, and intrinsic chlorine resistance. Here a novel synthetic method was demonstrated to prepare zwitterionic poly(arylene ether sulfone) (PAES) copolymers, which was blended with native polysulfone (PSf) to fabricate free-standing asymmetric membranes via non-solvent induced phase separation process. Both the porosity of the support layer and surface hydrophilicity increased drastically due to the incorporation of …

Yang, Yi, Green, Matthew D, Lin, Jerry Y.S., et al.
Created Date

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations. Static TGA …

James, Joshua B., Lin, Jerry Y.S., Emady, Heather, et al.
Created Date