Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Monsoon hazards routinely affect the community, economy, and environment of the American Southwest. A common link for hazard development during the North American Monsoon concerns the interplay between temperature, moisture, and wind in the vertical atmosphere controlled by an unstable monsoon circulation. This dissertation investigates vertical atmospheric patterns using in-situ sounding data, specifically, 1) environments favorable for severe hail on the Colorado Plateau, 2) significant parameters distinguishing unhealthy versus healthy ozone days in Phoenix, Arizona, and 3) vertical profile alignments associated with distinct ranges in ozone concentrations observed in Phoenix having defined health impacts. The first study (published in the …

Contributors
Malloy, Jonny William, Cerveny, Randall S, Selover, Nancy J, et al.
Created Date
2019

The North American Monsoon System (NAMS) contributes ~55% of the annual rainfall in the Chihuahuan Desert during the summer months. Relatively frequent, intense storms during the NAMS increase soil moisture, reduce surface temperature and lead to runoff in ephemeral channels. Quantifying these processes, however, is difficult due to the sparse nature of coordinated observations. In this study, I present results from a field network of rain gauges (n = 5), soil probes (n = 48), channel flumes (n = 4), and meteorological equipment in a small desert shrubland watershed (~0.05 km2) in the Jornada Experimental. Using this high-resolution network, I …

Contributors
Templeton, Ryan, Vivoni, Enrique R, Mays, Larry, et al.
Created Date
2011