Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Language
  • English
Subject
Date Range
2011 2020


In this thesis, a single-level, multi-item capacitated lot sizing problem with setup carryover, setup splitting and backlogging is investigated. This problem is typically used in the tactical and operational planning stage, determining the optimal production quantities and sequencing for all the products in the planning horizon. Although the capacitated lot sizing problems have been investigated with many different features from researchers, the simultaneous consideration of setup carryover and setup splitting is relatively new. This consideration is beneficial to reduce costs and produce feasible production schedule. Setup carryover allows the production setup to be continued between two adjacent periods without incurring …

Contributors
Chen, Cheng-Lung, Zhang, Muhong, Mohan, Srimathy, et al.
Created Date
2015

This research is to address the design optimization of systems for a specified reliability level, considering the dynamic nature of component failure rates. In case of designing a mechanical system (especially a load-sharing system), the failure of one component will lead to increase in probability of failure of remaining components. Many engineering systems like aircrafts, automobiles, and construction bridges will experience this phenomenon. In order to design these systems, the Reliability-Based Design Optimization framework using Sequential Optimization and Reliability Assessment (SORA) method is developed. The dynamic nature of component failure probability is considered in the system reliability model. The Stress-Strength …

Contributors
Bala Subramaniyan, Arun, Pan, Rong, Askin, Ronald, et al.
Created Date
2016

Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite their focus on relatively esoteric aspects of the problem, and have limited potential for practical use due to computational requirements. This dissertation attempts to address various modeling and computational issues, introducing realistic choice-based demand revenue management models. In particular, this work introduces two optimization formulations alongside a choice-based demand modeling …

Contributors
Clough, Michael C., Gel, Esma, Jacobs, Timothy, et al.
Created Date
2016

The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally …

Contributors
Balasubramanian, Pranavamoorthy, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2016

Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design. Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As …

Contributors
Li, Chao, Hedman, Kory, Sankar, Lalitha, et al.
Created Date
2016

While agency problems inevitably exist in buyer-supplier relationships, the focus on how to overcome such problems has been confined to the buyer-supplier dyad as if the dyad exists in isolation. In this dissertation, I re-frame the agency problems beyond the dyadic relationship between a buyer and its supplier and suggest a new way to overcome agency problems. While the current Agency Theory suggests that the buyer can monitor and provide incentives to mitigate the agency problems, I propose to look beyond the dyad in addressing buyer-supplier agency problems. In the first chapter, I examine the impact of the “indirect links” …

Contributors
Yang, Yang, Choi, Thomas Y, Carter, Craig, et al.
Created Date
2016

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty. In the first …

Contributors
Li, Chao, Hedman, Kory W, Zhang, Muhong, et al.
Created Date
2016

Mobile healthy food retailers are a novel alleviation technique to address disparities in access to urban produce stores in food desert communities. Such retailers, which tend to exclusively stock produce items, have become significantly more popular in the past decade, but many are unable to achieve economic sustainability. Therefore, when local and federal grants and scholarships are no longer available for a mobile food retailer, they must stop operating which poses serious health risks to consumers who rely on their services. To address these issues, a framework was established in this dissertation to aid mobile food retailers with reaching economic …

Contributors
Wishon, Christopher John, Villalobos, Rene, Fowler, John, et al.
Created Date
2016

Firms are increasingly being held accountable for the unsustainable actions of their suppliers. Stakeholders, regulatory agencies, and customers alike are calling for increased levels of transparency and higher standards of corporate social responsibility (CSR) performance for suppliers. While it is apparent that supplier performance is important, it remains unclear how the stock market weighs the CSR performance of a supplier relative to that of a focal firm. This dissertation focuses on whether these relative differences exist. In addition to capturing the magnitude of the difference in market impact between focal firm and supplier CSR events; I analyze the ways in …

Contributors
Rogers, Zachary Stewart, Carter, Craig, Dooley, Kevin, et al.
Created Date
2016

Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS deployment decisions is critical for climate change mitigation. This thesis proposes an improved mathematical formulation for the scalable infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-cost pipe network to capture, transport, and store a target amount of CO2. Model decisions include source, reservoir, and pipe …

Contributors
Lobo, Loy Joseph, Sefair, Jorge A, Escobedo, Adolfo, et al.
Created Date
2017