Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS deployment decisions is critical for climate change mitigation. This thesis proposes an improved mathematical formulation for the scalable infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-cost pipe network to capture, transport, and store a target amount of CO2. Model decisions include source, reservoir, and pipe …

Contributors
Lobo, Loy Joseph, Sefair, Jorge A, Escobedo, Adolfo, et al.
Created Date
2017