Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power …

Contributors
Lyon, Joshua, Zhang, Muhong, Hedman, Kory W, et al.
Created Date
2015

The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost. Contemporary …

Contributors
Singhal, Nikita Ghanshyam, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2018

The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally …

Contributors
Balasubramanian, Pranavamoorthy, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2016

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration. This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line …

Contributors
Korad, Akshay Shashikumar, Hedman, Kory W, Ayyanar, Raja, et al.
Created Date
2015

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty. In the first …

Contributors
Li, Chao, Hedman, Kory W, Zhang, Muhong, et al.
Created Date
2016