Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Language
  • English
Subject
Date Range
2010 2019


This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, …

Contributors
Singh, Kanishka Raj, Yong, Sze Zheng, Artemiadis, Panagiotis, et al.
Created Date
2018

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due …

Contributors
CHUKEWAD, YOGESH MADHAVRAO, SODEMANN, ANGELA A, DAVIDSON, JOSEPH K, et al.
Created Date
2014

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact …

Contributors
Muralidhar, Ashwini, Saripalli, Srikanth, Papandreou-Suppappola, Antonia, et al.
Created Date
2011

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top …

Contributors
Ravishankar, Nikhilesh, Rodriguez, Armando A, Tsakalis, Konstantinos, et al.
Created Date
2018

The Basilisk lizard is known for its agile locomotion capabilities on granular and aquatic media making it an impressive model organism for studying multi-terrain locomotion mechanics. The work presented here is aimed at understanding locomotion characteristics of Basilisk lizards through a systematic series of robotic and animal experiments. In this work, a Basilisk lizard inspired legged robot with bipedal and quadrupedal locomotion capabilities is presented. A series of robot experiments are conducted on dry and wet (saturated) granular media to determine the effects of gait parameters and substrate saturation, on robot velocity and energetics. Gait parameters studied here are stride …

Contributors
Jayanetti, Vidu, Marvi, Hamid, Emady, Heather, et al.
Created Date
2019

Sports activities have been a cornerstone in the evolution of humankind through the ages from the ancient Roman empire to the Olympics in the 21st century. These activities have been used as a benchmark to evaluate the how humans have progressed through the sands of time. In the 21st century, machines along with the help of powerful computing and relatively new computing paradigms have made a good case for taking up the mantle. Even though machines have been able to perform complex tasks and maneuvers, they have struggled to match the dexterity, coordination, manipulability and acuteness displayed by humans. Bi-manual …

Contributors
Kalige, Nikhil, Amor, Heni Ben, Shrivastava, Aviral, et al.
Created Date
2016

This thesis presents an autonomous vehicle test bed which can be used to conduct studies on the interaction between human-driven vehicles and autonomous vehicles on the road. The test bed will make use of a fleet of robots which is a microcosm of an autonomous vehicle performing all the vital tasks like lane following, traffic signal obeying and collision avoidance with other vehicles on the road. The robots use real-time image processing and closed-loop control techniques to achieve automation. The testbed also features a manual control mode where a user can choose to control the car with a joystick by …

Contributors
Subramanyam, Rakshith, Berman, Spring, Yu, Honbin, et al.
Created Date
2018

Although current urban search and rescue (USAR) robots are little more than remotely controlled cameras, the end goal is for them to work alongside humans as trusted teammates. Natural language communications and performance data are collected as a team of humans works to carry out a simulated search and rescue task in an uncertain virtual environment. Conditions are tested emulating a remotely controlled robot versus an intelligent one. Differences in performance, situation awareness, trust, workload, and communications are measured. The Intelligent robot condition resulted in higher levels of performance and operator situation awareness (SA). Dissertation/Thesis

Contributors
Bartlett, Cade Earl, Cooke, Nancy J, Kambhampati, Subbarao, et al.
Created Date
2015

Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise …

Contributors
Nuthi, Sai Gautham, Polygerinos, Panagiotis, Lee, Hyunglae, et al.
Created Date
2018

The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents the development and experimental validation of a control system for a new vibrotactile haptic display that is currently in development. In order to allow the vibrotactile haptic display to be used to represent motion, the control system must be able to change the image displayed at a rate of at …

Contributors
KIM, KENDRA, Sodemann, Angela, Robertson, John, et al.
Created Date
2018