Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion …

Contributors
Adams, Wade Silas, Aukes, Daniel, Sugar, Thomas, et al.
Created Date
2019

Muscular weakness is a common manifestation for Stroke survivors and for patients with Anterior Cruciate Ligament reconstruction leading to reduced functional independence, especially mobility. Several rigid orthotic devices are being designed to assist mobility. However, limitations in majority of these devices are: 1) that they are constrained only to level walking applications, 2) are mostly bulky and rigid lacking user comfort. For these reasons, rehabilitation using soft-robotics can serve as a powerful modality in gait assistance and potentially accelerate functional recovery. The characteristics of soft robotic exosuit is that it’s more flexible, delivers high power to weight ratio, and conforms …

Contributors
Muthukrishnan, Niveditha, Polygerinos, Panagiotis, Lockhart, Thurmon, et al.
Created Date
2018

Lower-limb wearable assistive robots could alter the users gait kinematics by inputting external power, which can be interpreted as mechanical perturbation to subject normal gait. The change in kinematics may affect the dynamic stability. This work attempts to understand the effects of different physical assistance from these robots on the gait dynamic stability. A knee exoskeleton and ankle assistive device (Robotic Shoe) are developed and used to provide walking assistance. The knee exoskeleton provides personalized knee joint assistive torque during the stance phase. The robotic shoe is a light-weighted mechanism that can store the potential energy at heel strike and …

Contributors
Rezayat Sorkhabadi, Seyed Mostafa, Zhang, Wenlong, Lee, Hyunglae, et al.
Created Date
2018

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on …

Contributors
Sansgiri, Dattaraj, Dounskaia, Natalia, Schaefer, Sydney, et al.
Created Date
2018

Human running requires extensive training and conditioning for an individual to maintain high speeds (greater than 10mph) for an extended duration of time. Studies have shown that running at peak speeds generates a high metabolic cost due to the use of large muscle groups in the legs associated with the human gait cycle. Applying supplemental external and internal forces to the human body during the gait cycle has been shown to decrease the metabolic cost for walking, allowing individuals to carry additional weight and walk further distances. Significant research has been conducted to reduce the metabolic cost of walking, however, …

Contributors
Kerestes, Jason, Sugar, Thomas, Redkar, Sangram, et al.
Created Date
2014