Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Subject
Date Range
2011 2020


Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a …

Contributors
Hunter, Joseph G, Mason, Hugh, Mor, Tsafrir, et al.
Created Date
2018

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used …

Contributors
Tao, Zenan, Shi, Yixin, Wang, Xuan, et al.
Created Date
2018

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would …

Contributors
Julik, Emily, Reyes del Valle, Jorge, Chang, Yung, et al.
Created Date
2016

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made …

Contributors
Eckalbar, Walter, Kusumi, Kenro, Huentelman, Matthew, et al.
Created Date
2012

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool …

Contributors
Flores, Julia Anne, Chaput, John C, Jacobs, Bertram, et al.
Created Date
2012

One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the DNA molecule to precisely instruct biological processes in living organisms. The region located between the STOP codon and the poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key modulator of these activities. It contains numerous sequence elements that are targeted by trans-acting factors that dose …

Contributors
Blazie, Stephen, Mangone, Marco, LaBaer, Josh, et al.
Created Date
2016

The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA has been reported to define the onset of certain types of cancers. Illustrated in Chapter 1 is the general history of research on the interaction of DNA and anticancer drugs, most importantly different congener of bleomycin (BLM). Additionally, several synthetic analogues of bleomycin, including the structural components and functionalities, are …

Contributors
Roy, Basab, Hecht, Sidney M, Jones, Anne, et al.
Created Date
2014

The basic scheme for photosynthesis suggests the two photosystems existing in parity with one another. However, cyanobacteria typically maintain significantly more photosystem I (PSI) than photosystem II (PSII) complexes. I set out to evaluate this disparity through development and analysis of multiple mutants of the genetically tractable cyanobacterium Synechocystis sp. PCC 6803 that exhibit a range of expression levels of the main proteins present in PSI (Chapter 2). One hypothesis was that the higher abundance of PSI in this organism is used to enable more cyclic electron flow (CEF) around PSI to contribute to greater ATP synthesis. Results of this …

Contributors
Moore, Vicki, Vermaas, Willem, Wang, Xuan, et al.
Created Date
2017

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature …

Contributors
Racine, Valerie, Maienschein, Jane, Laubichler, Manfred D, et al.
Created Date
2016

Identifying chemical compounds that inhibit bacterial infection has recently gained a considerable amount of attention given the increased number of highly resistant bacteria and the serious health threat it poses around the world. With the development of automated microscopy and image analysis systems, the process of identifying novel therapeutic drugs can generate an immense amount of data - easily reaching terabytes worth of information. Despite increasing the vast amount of data that is currently generated, traditional analytical methods have not increased the overall success rate of identifying active chemical compounds that eventually become novel therapeutic drugs. Moreover, multispectral imaging has …

Contributors
Trevino, Robert, Liu, Huan, Lamkin, Thomas J, et al.
Created Date
2016

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a …

Contributors
Kessans, Sarah Adeline, Mor, Tsafrir S, Matoba, Nobuyuki, et al.
Created Date
2011

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the …

Contributors
Pugh, Shawn, Nielsen, David, Dai, Lenore, et al.
Created Date
2016

Flaviviruses (FVs) are among the most medically important arboviruses of the world with the Dengue virus (DENV) accounting for a large percentage of infections observed in tropical and subtropical regions of the world. Globalization, travel, and the expanding range of mosquito vectors, such as Aedes aegypti, have increased the potential of infection rates and illnesses associated with FVs. The DENV and the Zika (ZIKV) FVs frequently co-circulate and generally cause mild self-liming febrile illnesses. However, a secondary infection with a heterologous DENV serotype may lead to life threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DHF/DSS have been …

Contributors
Esqueda, Adrian, Chen, Qiang, Arntzen, Charles, et al.
Created Date
2019

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with …

Contributors
Wang, Junshi, Hammer, Ronald, Feuerstein, Burt, et al.
Created Date
2013

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed with the highly aggressive triple-negative breast cancer (TNBC) subtype. Even within the TNBC subtype, AA women have a worse clinical outcome compared to CA. Although multiple socio-economic and lifestyle factors may contribute to these observed health disparities, it is essential that the underlying biological differences between CA and AA TNBC …

Contributors
Getz, Julie Elizabeth, Baumbach-Reardon, Lisa L, Lake, Douglas F, et al.
Created Date
2015

Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze the factors affecting the binding patterns using monoclonal antibodies and determine how much information may be extracted from the sequences. Specifically, I examined the effects of antibody concentration, competition, peptide density, and antibody valence. Peptide binding could be detected at the low concentrations relevant to immunosignaturing, and a monoclonal's signature …

Contributors
Halperin, Rebecca Faith, Johnston, Stephen A, Bordner, Andrew, et al.
Created Date
2011

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. …

Contributors
Koelbel, Calvin, Lake, Douglas, Chen, Qiang "Shawn", et al.
Created Date
2019

Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) is a rare and highly aggressive ovarian cancer that affects children and young women at a mean age of 24 years. Most SCCOHT patients are diagnosed at an advanced stage and do not respond to chemotherapy. As a result, more than 75% of patients succumb to their disease within 1-2 years. To provide insights into the biological, diagnostic, and therapeutic vulnerabilities of this deadly cancer, a comprehensive characterization of 22 SCCOHT cases and 2 SCCOHT cell lines using microarray and next-generation sequencing technologies was performed. Following histological examination, tumor DNA and …

Contributors
Ramos, Pilar, Anderson, Karen, Trent, Jeffrey, et al.
Created Date
2014

Creating sustainable alternatives to fossil fuel resources is one of the greatest challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional fuels, but must be produced in great quantities in order to meet the demands of growing populations. Cyanobacteria are prokaryotic photosynthetic microorganisms that can produce biomass on large scales using only sunlight, carbon dioxide, water, and small amounts of nutrients. Thus, Cyanobacteria are a viable option for sustainable production …

Contributors
Zevin, Alexander Simon, Rittmann, Bruce E, Krajmalnik-Brown, Rosa, et al.
Created Date
2015

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between …

Contributors
Yang, Jiseon, Nickerson, Cheryl A., Chang, Yung, et al.
Created Date
2015

An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced by spiders (order Araneae) and silkworms (order Lepidoptera). This thesis provides an in-depth molecular-level characterization of silk fibers produced by two vastly different insects: the caddisfly larvae (order Trichoptera) and the webspinner (order Embioptera). The molecular structure of caddisfly larval silk from the species <italic>Hesperophylax consimilis</italic> was characterized using solid-state …

Contributors
Addison, John Bennett, Yarger, Jeffery L, Holland, Gregory P, et al.
Created Date
2014

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable …

Contributors
Dunn, Matthew Ryan, Chaput, John C, LaBaer, Joshua, et al.
Created Date
2015

Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. …

Contributors
Standage-Beier, Kylie S, Wang, Xiao, Brafman, David A, et al.
Created Date
2018

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions …

Contributors
Schmidlin, Kara, Varsani, Arvind, Van Doorslaer, Koenraad, et al.
Created Date
2019

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, diagnosed late in the disease by a series of motor deficits that manifest over years or decades. It is characterized by degeneration of mid-brain dopaminergic neurons with a high prevalence of dementia associated with the spread of pathology to cortical regions. Patients exhibiting symptoms have already undergone significant neuronal loss without chance for recovery. Analysis of disease specific changes in gene expression directly from human patients can uncover invaluable clues about a still unknown etiology, the potential of which grows exponentially as additional gene regulatory measures are questioned. Epigenetic mechanisms are emerging …

Contributors
Henderson, Adrienne Rose, Huentelman, Matthew J, Newbern, Jason, et al.
Created Date
2019

Water contamination with nitrate (NO3&minus;) (from fertilizers) and perchlorate (ClO4&minus;) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3&minus; and ClO4&minus; in the presence of naturally occurring sulfate (SO42&minus;). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when …

Contributors
Ontiveros, Aura, Rittmann, Bruce E., Krajmalnik-Brown, Rosa, et al.
Created Date
2014

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with …

Contributors
Ravichandran, Jayachandran, Katsanos, Christos, Coletta, Dawn, et al.
Created Date
2017

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily …

Contributors
Wang, Bo, Meldrum, Deirdre R, Zhang, Weiwen, et al.
Created Date
2014

Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome editing efficiency by CRISPR/Cas9 systems. Many groups have attempted to de-silence chromatin to regulate genes and enhance DNA's accessibility to nucleases, but inconsistent results leave outstanding questions. Here, I test different types of activators, to analyze changes in chromatin features that result for chromatin opening, and to identify the critical …

Contributors
Barrett, Cassandra, Haynes, Karmella A, Rege, Kaushal, et al.
Created Date
2019

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits …

Contributors
Bjorklund, George Reed, Newbern, Jason M, Neisewander, Janet, et al.
Created Date
2018

The highly specialized telomerase ribonucleoprotein enzyme is composed minimally of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) for catalytic activity. Telomerase is an RNA-dependent DNA polymerase that syntheizes DNA repeats at chromosome ends to maintain genome stability. While TERT is highly conserved among various groups of species, the TR subunit exhibits remarkable divergence in primary sequence, length, secondary structure and biogenesis, making TR identification extremely challenging even among closely related groups of organisms. A unique computational approach combined with in vitro telomerase activity reconstitution studies was used to identify 83 novel TRs from 10 animal kingdom phyla spanning 18 …

Contributors
Logeswaran, Dhenugen, Chen, Julian J-L, Ghirlanda, Giovanna, et al.
Created Date
2019

Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using a complex and currently poorly understood mechanism of template translocation to stop nucleotide addition, regenerate its template, and then synthesize a new repeat. In this study, several novel interactions between the telomerase protein and RNA components along with the DNA substrate are identified and characterized which come together to allow …

Contributors
Brown, Andrew, Chen, Julian J. L., Jones, Anne, et al.
Created Date
2014

Recent studies have shown that human papillomavirus (HPV) plays a role in development of cancers, one of which is head and neck cancer. There is strong and consistent molecular evidence demonstrating that human papillomavirus (HPV) is an etiological cause of these oropharyngeal cancers. Despite the introduction of HPV vaccines, there is still an increase in human papillomavirus associated OPC (HPVOPC) and it is expected that the incidence of head and neck cancer, specifically oropharyngeal cancer (OPC) will increase. The aim of this study is to utilize human papillomavirus (HPV) seropositivity for rapid detection of HPV early specific antigen-antibodies using a …

Contributors
Ladipo, Evelyn, Anderson, Karen S, Hogue, Brenda G, et al.
Created Date
2019

ABSTRACT In terms of prevalence, human suffering and costs dengue infections are the most important arthropod-borne viral disease worldwide. Dengue virus (DENV) is a mosquito-borne flavivirus and the etiological agent of dengue fever and dengue hemorrhagic fever. Thus, development of a safe and efficient vaccine constitutes an urgent necessity. Besides the traditional strategies aim at generating immunization options, the usage of viral vectors to deliver antigenic stimulus in order to elicit protection are particularly attractive for the endeavor of a dengue vaccine. The viral vector (MVvac2) is genetically equivalent to the currently used measles vaccine strain Moraten, which adds practicality …

Contributors
Abdelgalel, Rowida, Reyes Del Valle, Jorge, Hogue, Brenda, et al.
Created Date
2013

Zika virus (ZIKV) outbreaks have been linked to several neurological pathologies in the developing fetus, which can progress to spontaneous abortion and microcephaly in newborns whose mothers were infected with the virus during pregnancy. ZIKV has also been correlated with neurological complications in adults such as Guillain-Barré Syndrome (GBS). ZIKV outbreaks often occur in low income areas with limited access to healthcare. Therefore, there is a need to create a low-cost preventative vaccine against the virus. Mature ZIKV particles contain a lipid bilayer, a positive sense single stranded RNA genome and three structural proteins: the envelope (E), membrane (M) and …

Contributors
Di Palma, Michelle Pina, Mor, Tsafrir S, Mason, Hugh S, et al.
Created Date
2018

Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. We describe the establishment of primary dermal fibroblasts cells lines from 28 …

Contributors
Hjelm, Brooke Erika, Craig, David W., Wilson-Rawls, Norma J., et al.
Created Date
2013

ABSTRACT Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is used to develop microbial biofuel technologies. However, outside of photosynthetic processes, relatively little is known about the biology of microbial phototrophs such as Synechocystis, which impairs their development into market-ready technologies. My research objective was to characterize strategic aspects of Synechocystis biology related to its use in biofuel production; …

Contributors
Allen, Rebecca Custer, Curtiss III, Roy, Krajmalnik-Brown, Rosa, et al.
Created Date
2016

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing …

Contributors
Katchman, Benjamin, Lake, Douglas F., Rawls, Jeffery A, et al.
Created Date
2012

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF …

Contributors
Kras, Katon, Katsanos, Christos, Chandler, Douglas, et al.
Created Date
2017

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the …

Contributors
Paul, Robin, Fromme, Petra, Ros, Alexandra, et al.
Created Date
2014

Spatial resolved detection and quantification of ribonucleic acid (RNA) molecules in single cell is crucial for the understanding of inherent biological issues, like mechanism of gene regulation or the development and maintenance of cell fate. Conventional methods for single cell RNA profiling, like single-cell RNA sequencing (scRNA-seq) or single-molecule fluorescent in situ hybridization (smFISH), suffer either from the loss of spatial information or the low detection throughput. In order to advance single-cell analysis, new approaches need to be developed with the ability to perform high-throughput detection while preserving spatial information of the subcellular location of target RNA molecules. Novel approaches …

Contributors
Xiao, Lu, Guo, Jia, Wang, Xu, et al.
Created Date
2019

The entire history of HIV-1 is hidden in its ten thousand bases, where information regarding its evolutionary traversal through the human population can only be unlocked with fine-scale sequence analysis. Measurable footprints of mutation and recombination have imparted upon us a wealth of knowledge, from multiple chimpanzee-to-human transmissions to patterns of neutralizing antibody and drug resistance. Extracting maximum understanding from such diverse data can only be accomplished by analyzing the viral population from many angles. This body of work explores two primary aspects of HIV sequence evolution, point mutation and recombination, through cross-sectional (inter-individual) and longitudinal (intra-individual) investigations, respectively. Cross-sectional …

Contributors
Hepp, Crystal Marie, Rosenberg, Michael S, Hedrick, Philip, et al.
Created Date
2013

The unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a NiFe-type bidirectional hydrogenase that is capable of using reducing equivalents to reduce protons and generate H¬2. In order to achieve sustained H2 production using this cyanobacterium many challenges need to be overcome. Reported H2 production from Synechocystis is of low rate and often transient. Results described in this dissertation show that the hydrogenase activity in Synechocystis is quite different during periods of darkness and light. In darkness, the hydrogenase enzyme acts in a truly bidirectional way and a particular H2 concentration is reached that depends upon the amount of biomass involved …

Contributors
Dutta, Ipsita, Vermaas, Willem FJ, Garcia-Pichel, Ferran, et al.
Created Date
2015

In vitro selection technologies allow for the identification of novel biomolecules endowed with desired functions. Successful selection methodologies share the same fundamental requirements. First, they must establish a strong link between the enzymatic function being selected (phenotype) and the genetic information responsible for the function (genotype). Second, they must enable partitioning of active from inactive variants, often capturing only a small number of positive hits from a large population of variants. These principles have been applied to the selection of natural, modified, and even unnatural nucleic acids, peptides, and proteins. The ability to select for and characterize new functional molecules …

Contributors
Larsen, Andrew, Chaput, John C, Jacobs, Bertram L, et al.
Created Date
2015

Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine the functional importance of Mycobacterium tuberculosis Fic and its putative antitoxin protein, Rv3642c. Using M. tuberculosis H37Rv genetic deletion mutants, fic and Rv3642c were demonstrated to promote intracellular survival in human THP-1 macrophage-like cells. Unlike other Fic toxins, of Fic toxin-antitoxin systems, Fic did not inhibit bacterial growth in vitro …

Contributors
LaMarca, Ryan, Haydel, Shelley, Lake, Douglas, et al.
Created Date
2017

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and …

Contributors
Griffin, Natasha Monette, Shi, Yixin, Clark-Curtiss, Josephine, et al.
Created Date
2013

Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg …

Contributors
Harahap, Indira Saridewi, Reyes del Valle, Jorge, Hogue, Brenda G, et al.
Created Date
2015

The goal of this thesis is to test whether Alzheimer's disease (AD) is associated with distinctive humoral immune changes that can be detected in plasma and tracked across time. This is relevant because AD is the principal cause of dementia, and yet, no specific diagnostic tests are universally employed in clinical practice to predict, diagnose or monitor disease progression. In particular, I describe herein a proteomic platform developed at the Center for Innovations in Medicine (CIM) consisting of a slide with 10.000 random-sequence peptides printed on its surface, which is used as the solid phase of an immunoassay where antibodies …

Contributors
Restrepo Jimenez, Lucas, Johnston, Stephen A, Chang, Yung, et al.
Created Date
2011

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis&rsquo; popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large&ndash;scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the …

Contributors
Gonzalez Esquer, Cesar Raul, Vermaas, Willem, Chandler, Douglas, et al.
Created Date
2013

Some cyanobacteria can generate hydrogen (H2) under certain physiological conditions and are considered potential agents for biohydrogen production. However, they also present low amounts of H2 production, a reaction reversal towards H2 consumption, and O2 sensitivity. Most attempts to improve H2 production have involved genetic or metabolic engineering approaches. I used a bio-prospecting approach instead to find novel strains that are naturally more apt for biohydrogen production. A set of 36, phylogenetically diverse strains isolated from terrestrial, freshwater and marine environments were probed for their potential to produce H2 from excess reductant. Two distinct patterns in H2 production were detected. …

Contributors
Kothari, Ankita, Garcia-Pichel, Ferran, Vermaas, Willem F J, et al.
Created Date
2013