Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

As existing solar cell technologies come closer to their theoretical efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 50% efficiency need to be explored. New materials systems are often investigated to achieve this, but the use of existing solar cell materials in advanced concept approaches is compelling for multiple theoretical and practical reasons. In order to include advanced concept approaches into existing materials, nanostructures are used as they alter the physical properties of these materials. To explore advanced nanostructured concepts with existing materials such as III-V alloys, silicon and/or silicon/germanium and associated alloys, fundamental aspects of using these …

Dahal, Som Nath, Honsberg, Christiana, Goodnick, Stephen, et al.
Created Date

In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications due to broad range of bandgaps of InxGa1-xN alloys from 0.65 eV (InN) to 3.42 eV (GaN), which covers most of the electromagnetic spectrum from ultraviolet to infrared wavelengths. InGaN’s high absorption coefficient, radiation resistance and thermal stability (operating with temperature > 450 ℃) makes it a suitable PV candidate for …

Fang, Yi, Vasileska, Dragica, Goodnick, Stephen, et al.
Created Date