Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Date Range
2010 2019


Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency. Though GaN CAVETs are promising new devices, they are expensive to develop due …

Contributors
Warren, Andrew, Vasileska, Dragica, Goodnick, Stephen, et al.
Created Date
2019

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion. In this dissertation, two types of devices are demonstrated: …

Contributors
Fu, Houqiang, Zhao, Yuji, Vasileska, Dragica, et al.
Created Date
2019

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and …

Contributors
Leilaeioun, Mohammadmehdi (Ashling), Goodnick, Stephen, Goryll, Michael, et al.
Created Date
2018

Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just …

Contributors
Shi, Jianwei, Holman, Zachary, Bowden, Stuart, et al.
Created Date
2018

Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a reasonably good fit to experimental mobility data. But as the semiconductor world moves towards 10nm technology, many of the basic assumptions in this method, namely the very fundamental Fermi’s golden rule come into question. The derivation of the Fermi’s golden rule assumes that the scattering is infrequent (therefore the long …

Contributors
Jayaram Thulasingam, Gokula Kannan, Vasileska, Dragica, Ferry, David, et al.
Created Date
2017

Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and changing ionization state with excess free carriers. Such complexity of interactions in CdTe makes understanding of temporal changes in …

Contributors
Guo, Da, Vasileska, Dragica, Sankin, Igor, et al.
Created Date
2017

Amorphous materials can be uniformly deposited over a large area at lower cost compared to crystalline semiconductors (Silicon or Germanium). This property along with its high resistivity and wide band-gap found many applications in devices like rectifiers, xerography, xero-radiography, ultrahigh sensitivity optical cameras, digital radiography, and mammography (2D and 3D tomosynthesis). Amorphous selenium is the only amorphous material that undergoes impact ionization where only holes avalanche at high electric fields. This leads to a small excess noise factor which is a very important performance comparison matrix for avalanche photodetectors. Thus, there is a need to model high field avalanche process …

Contributors
Mukherjee, Atreyo, Vasileska, Dragica, Goldan, Amirhossein, et al.
Created Date
2017

In recent years, there has been increased interest in the Indium Gallium Nitride (InGaN) material system for photovoltaic (PV) applications. The InGaN alloy system has demonstrated high performance for high frequency power devices, as well as for optical light emitters. This material system is also promising for photovoltaic applications due to broad range of bandgaps of InxGa1-xN alloys from 0.65 eV (InN) to 3.42 eV (GaN), which covers most of the electromagnetic spectrum from ultraviolet to infrared wavelengths. InGaN’s high absorption coefficient, radiation resistance and thermal stability (operating with temperature > 450 ℃) makes it a suitable PV candidate for …

Contributors
Fang, Yi, Vasileska, Dragica, Goodnick, Stephen, et al.
Created Date
2017

Semiconductor nanowires have the potential to emerge as the building blocks of next generation field-effect transistors, logic gates, solar cells and light emitting diodes. Use of Gallium Nitride (GaN) and other wide bandgap materials combines the advantages of III-nitrides along with the enhanced mobility offered by 2-dimensional confinement present in nanowires. The focus of this thesis is on developing a low field mobility model for a GaN nanowire using Ensemble Monte Carlo (EMC) techniques. A 2D Schrödinger-Poisson solver and a one-dimensional Monte Carlo solver is developed for an Aluminum Gallium Nitride/Gallium Nitride Heterostructure nanowire. A GaN/AlN/AlGaN heterostructure device is designed …

Contributors
Kumar, Viswanathan Naveen, Vasileska, Dragica, Goodnick, Stephen, et al.
Created Date
2017

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the …

Contributors
Zhang, Chaomin, Honsberg, Christiana, King, Richard, et al.
Created Date
2017