Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Gas turbine efficiency has improved over the years due to increases in compressor pressure ratio and turbine entry temperature (TET) of main combustion gas, made viable through advancements in material science and cooling techniques. Ingestion of main combustion gas into the turbine rotor-stator disk cavities can cause major damage to the gas turbine. To counter this ingestion, rim seals are installed at the periphery of turbine disks, and purge air extracted from the compressor discharge is supplied to the disk cavities. Optimum usage of purge air is essential as purge air extraction imparts a penalty on turbine efficiency and specific …

Michael, Mukilan Sebastiraj, Roy, Ramendra P, Mignolet, Marc P, et al.
Created Date