Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

One of the greatest problems facing society today is the development of a sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they …

Sommer, Dayn Joseph, Ghirlanda, Giovanna, Redding, Kevin, et al.
Created Date

The exceptional mechanical properties of polymers with heterogeneous structure, such as the high toughness of polyethylene and the excellent blast-protection capability of polyurea, are strongly related to their morphology and nanoscale structure. Different polymer microstructures, such as semicrystalline morphology and segregated nanophases, lead to coordinated molecular motions during deformation in order to preserve compatibility between the different material phases. To study molecular relaxation in polyethylene, a coarse-grained model of polyethylene was calibrated to match the local structural variable distributions sampled from supercooled atomistic melts. The coarse-grained model accurately reproduces structural properties, e.g., the local structure of both the amorphous and …

Li, Yiyang, Oswald, Jay, Rajan, Subramaniam, et al.
Created Date