Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
Resource Type
Subject
Date Range
2010 2019


Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. Furthermore, ZnO is a potential material for transparent conducting oxide material competing with indium tin oxide (ITO), graphene, and carbon nanotube film. It has been known as a conductive material when doped with elements such as indium, gallium and aluminum. The solubility of those dopant elements in ZnO is still debatable; but, it is necessary to find alternative conducting materials when their form is film or nanostructure for display devices. This is a consequence of the ever increasing price of indium. In addition, a new generation …

Contributors
Choi, Hyung Woo, Alford, Terry L., Krause, Stephen, et al.
Created Date
2012

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. …

Contributors
Branch Kelly, Marion, Chawla, Nikhilesh, Ankit, Kumar, et al.
Created Date
2019

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. …

Contributors
Lee, Junghan, Bakkaloglu, Bertan, Kiaei, Sayfe, et al.
Created Date
2011

A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as a form of salience, results showed a more salient T2 increased recall, attenuating the AB. A more salient T1 did not differ from the control, suggesting the salience (increased size) of T2 is an important factor in the AB, while salience (increased size) of T1 does not affect the AB. …

Contributors
Lafko, Stacie, Becker, Vaughn, Branaghan, Russell, et al.
Created Date
2019

Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for …

Contributors
Buch, Rajesh, Wiek, Arnim, Basile, George, et al.
Created Date
2011

Many environmental microorganisms such as marine microbes are un-culturable; hence, they should be analyzed in situ. Even though a few in situ ocean observing instruments have been available to oceanographers, their applications are limited, because these instruments are expensive and power hungry. In this dissertation project, an inexpensive, portable, low-energy consuming, and highly quantitative microbiological genomic sensor has been developed for in situ ocean-observing systems. A novel real-time colorimetric loop-mediated isothermal amplification (LAMP) technology has been developed for quantitative detection of microbial nucleic acids. This technology was implemented on a chip-level device with an embedded inexpensive imaging device and temperature …

Contributors
Ci, Shufang, Meldrum, Deirdre R, Chao, Shih-hui, et al.
Created Date
2017

Modern intelligent transportation systems (ITS) make driving more efficient, easier, and safer. Knowledge of real-time traffic conditions is a critical input for operating ITS. Real-time freeway traffic state estimation approaches have been used to quantify traffic conditions given limited amount of data collected by traffic sensors. Currently, almost all real-time estimation methods have been developed for estimating laterally aggregated traffic conditions in a roadway segment using link-based models which assume homogeneous conditions across multiple lanes. However, with new advances and applications of ITS, knowledge of lane-based traffic conditions is becoming important, where the traffic condition differences among lanes are recognized. …

Contributors
Zhou, Zhuoyang, Mirchandani, Pitu, Askin, Ronald, et al.
Created Date
2015

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell …

Contributors
Koo, Bonsung, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2017

Cigarette smoking remains a major global public health issue. This is partially due to the chronic and relapsing nature of tobacco use, which contributes to the approximately 90% quit attempt failure rate. The recent rise in mobile technologies has led to an increased ability to frequently measure smoking behaviors and related constructs over time, i.e., obtain intensive longitudinal data (ILD). Dynamical systems modeling and system identification methods from engineering offer a means to leverage ILD in order to better model dynamic smoking behaviors. In this dissertation, two sets of dynamical systems models are estimated using ILD from a smoking cessation …

Contributors
Timms, Kevin Patrick, Rivera, Daniel E, Frakes, David, et al.
Created Date
2014

The accurate and fast determination of organic air pollutants for many applications and studies is critical. Exposure to volatile organic compounds (VOCs) has become an important public health concern, which may induce a lot of health effects such as respiratory irritation, headaches and dizziness. In order to monitor the personal VOCs exposure level at point-of-care, a wearable real time monitor for VOCs detection is necessary. For it to be useful in real world application, it requires low cost, small size and weight, low power consumption, high sensitivity and selectivity. To meet these requirements, a novel mobile device for personal VOCs …

Contributors
Deng, Yue, Forzani, Erica S, Lind, Mary L, et al.
Created Date
2017