Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Subject
Date Range
2011 2019


The Resistive Random Access Memory (ReRAM) is an emerging non-volatile memory technology because of its attractive attributes, including excellent scalability (< 10 nm), low programming voltage (< 3 V), fast switching speed (< 10 ns), high OFF/ON ratio (> 10), good endurance (up to 1012 cycles) and great compatibility with silicon CMOS technology [1]. However, ReRAM suffers from larger write latency, energy and reliability issue compared to Dynamic Random Access Memory (DRAM). To improve the energy-efficiency, latency efficiency and reliability of ReRAM storage systems, a low cost cross-layer approach that spans device, circuit, architecture and system levels is proposed. For …

Contributors
Mao, Manqing, Chakrabariti, Chaitali, Yu, Shimeng, et al.
Created Date
2019

Stress-related failure such as cracking are an important photovoltaic (PV) reliability issue since it accounts for a high percentage of power losses in the midlife-failure and wear-out failure regimes. Cell cracking can only be correlated with module degradation when cracks are of detectable size and detrimental to the performance. Several techniques have been explored to access the deflection and stress status on solar cell, but they have disadvantages such as high surface sensitivity. This dissertation presents a new and non-destructive method for mapping the deflection on encapsulated solar cells using X-ray topography (XRT). This method is based on Bragg diffraction …

Contributors
Meng, Xiaodong, Bertoni, Marian I, Meier, Rico, et al.
Created Date
2019

Semiconductor devices often face reliability issues due to their operational con- ditions causing performance degradation over time. One of the root causes of such degradation is due to point defect dynamics and time dependent changes in their chemical nature. Previously developed Unified Solver was successful in explaining the copper (Cu) metastability issues in cadmium telluride (CdTe) solar cells. The point defect formalism employed there could not be extended to chlorine or arsenic due to numerical instabilities with the dopant chemical reactions. To overcome these shortcomings, an advanced version of the Unified Solver called PVRD-FASP tool was developed. This dissertation presents …

Contributors
Shaik, Abdul Rawoof, Vasileska, Dragica, Ringhofer, Christian, et al.
Created Date
2019

In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN devices operating in DC, small signal AC and large-signal radio-frequency (RF) conditions emphasizing on the microscopic properties that correlate to degradation of device performance such as generation of hot carriers, presence of material defects and self-heating effects. First, a review of concepts concerning GaN technology, devices, reliability mechanisms and PA …

Contributors
Latorre Rey, Alvaro Daniel, Saraniti, Marco, Kitchen, Jennifer, et al.
Created Date
2018

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability. Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave …

Contributors
Didehban, Moslem, Shrivastava, Aviral, Wu, Carole-Jean, et al.
Created Date
2018

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate …

Contributors
Kadloor, Nikhil, Kuitche, Joseph, Pan, Rong, et al.
Created Date
2017

This is a two-part thesis assessing the long-term reliability of photovoltaic modules. Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV module manufacturing This part is aimed at introducing a statistical tool in quality assessments in PV module manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify the impact of failure modes observed at the time of manufacturing. The method was developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage in module manufacturing facilities across south east Asia. …

Contributors
Pore, Shantanu Shirish, Tamizhmani, Govindasamy, Green, Matthew, et al.
Created Date
2017

Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and changing ionization state with excess free carriers. Such complexity of interactions in CdTe makes understanding of temporal changes in …

Contributors
Guo, Da, Vasileska, Dragica, Sankin, Igor, et al.
Created Date
2017

The aging mechanism in devices is prone to uncertainties due to dynamic stress conditions. In AMS circuits these can lead to momentary fluctuations in circuit voltage that may be missed by a compact model and hence cause unpredictable failure. Firstly, multiple aging effects in the devices may have underlying correlations. The generation of new traps during TDDB may significantly accelerate BTI, since these traps are close to the dielectric-Si interface in scaled technology. Secondly, the prevalent reliability analysis lacks a direct validation of the lifetime of devices and circuits. The aging mechanism of BTI causes gradual degradation of the device …

Contributors
Patra, Devyani, Cao, Yu, Barnaby, Hugh, et al.
Created Date
2017

The fatigue resistance of asphalt concrete (AC) plays an important role in the service life of a pavement. For predicting the fatigue life of AC, there are several existing empirical and mechanistic models. However, the assessment and quantification of the ‘reliability’ of the predictions from these models is a substantial knowledge gap. The importance of reliability in AC material performance predictions becomes all the more important in light of limited monetary and material resources. The goal of this dissertation research is to address these shortcomings by developing a framework for incorporating reliability into the prediction of mechanical models for AC …

Contributors
Gudipudi, Padmini Priyadarsini, Underwood, Benjamin S, Kaloush, Kamil, et al.
Created Date
2016