Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Date Range
2011 2020


The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for …

Contributors
Gupta, Yeshpal, Phelan, Patrick E, Bryan, Harvey J, et al.
Created Date
2011

Emergent environmental issues, ever-shrinking petroleum reserves, and rising fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. Meanwhile, however, the development and viability of biofuel fermentations remain limited by numerous factors such as feedback inhibition and inefficient and generally energy intensive product recovery processes. To circumvent both feedback inhibition and recovery issues, researchers have turned their attention to incorporating energy efficient separation techniques such as adsorption in in situ product recovery (ISPR) approaches. This thesis focused on the characterization of two novel adsorbents for the recovery of alcohol biofuels from model aqueous solutions. …

Contributors
Levario, Thomas James, Nielsen, David R, Vogt, Bryan D, et al.
Created Date
2011

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities …

Contributors
Linneen, Nick, Lin, Jerry, Pfeffer, Robert, et al.
Created Date
2014

Arsenic (As) is a naturally occurring element that poses a health risk when continually consumed at levels exceeding the Environmental Protection Agencies (EPA) maximum contaminant level (MCL) of 10 ppb. With the Arizona Department of Water Resources considering reliance on other sources of water other than just solely surface water, groundwater proves a reliable, supplemental source. The Salt River Project (SRP) wants to effectively treat their noncompliance groundwater sources to meet EPA compliance. Rapid small-scale column tests (RSSCTs) of two SRP controlled groundwater wells along the Eastern Canal and Consolidated Canal were designed to assist SRP in selection and future …

Contributors
Lesan, Dylan Scott, Westerhoff, Paul, Hristovski, Kiril, et al.
Created Date
2015

An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds …

Contributors
Armstrong, Mitchell, Mu, Bin, Green, Matthew, et al.
Created Date
2018

Just for a moment! Imagine you live in Arizona without air-conditioning systems! Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global warming. The search for more efficient cooling/refrigeration systems with environmental friendly refrigerants has become more and more important so as to reduce greenhouse gas emissions and ensure sustainable and affordable energy systems. The most widely used air-conditioning and refrigeration system, based on the vapor compression cycle, is driven by …

Contributors
ALELYANI, Sami Mohammed, Phelan, Patrick E, Wang, Liping, et al.
Created Date
2018

Layered chalcogenides are a diverse class of crystalline materials that consist of covalently bound building blocks held together by van der Waals forces, including the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides (PCs) among all. These materials, in particular, MoS2 which is the most widely studied TMDC material, have attracted significant attention in recent years due to their unique physical, electronic, optical, and chemical properties that depend on the number of layers. Due to their high aspect ratios and extreme thinness, 2D materials are sensitive to modifications via chemistry on their surfaces. For instance, covalent functionalization can be used …

Contributors
Li, Duo, Wang, Qing Hua, Green, Alexander A., et al.
Created Date
2019

Global warming resulted from greenhouse gases emission has received widespread attention. Meanwhile, it is required to explore renewable and environmentally friendly energy sources due to the severe pollution of the environment caused by fossil fuel combustion. In order to realize a substantial adsorption process to resolve the environmental issues, the development of new adsorbents with improved properties has become the most critical issue. This dissertation presents the work of four individual but related studies on systematic characterization and process simulations of novel adsorbents with superior adsorption properties. A perovskite oxide material, La0.1Sr0.9Co0.9Fe0.1O3-δ (LSCF1991), was investigated first for high-temperature air separation. …

Contributors
Xu, Mai, Deng, Shuguang, Lind, MaryLaura, et al.
Created Date
2020