Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Date Range
2011 2017


Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain radiation environments without the use of special fabrication processes. This work focuses on the cache design for a high performance microprocessor. The design tries to mitigate radiation effects like SEE, on a commercial foundry 45 nm SOI process. The design has been ported from a previously done cache design at …

Contributors
Xavier, Jerin, Clark, Lawrence T, Cao, Yu, et al.
Created Date
2012

The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to …

Contributors
Maurya, Satendra Kumar, Clark, Lawrence T, Holbert, Keith, et al.
Created Date
2012

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has …

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Holbert, Keith E, et al.
Created Date
2013

A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The …

Contributors
Hindman, Nathan David, Clark, Lawrence T, Holbert, Keith, et al.
Created Date
2012

Soft errors are considered as a key reliability challenge for sub-nano scale transistors. An ideal solution for such a challenge should ultimately eliminate the effect of soft errors from the microprocessor. While forward recovery techniques achieve fast recovery from errors by simply voting out the wrong values, they incur the overhead of three copies execution. Backward recovery techniques only need two copies of execution, but suffer from check-pointing overhead. In this work I explored the efficiency of integrating check-pointing into the application and the effectiveness of recovery that can be performed upon it. After evaluating the available fine-grained approaches to …

Contributors
Lokam, Sai Ram Dheeraj, Shrivastava, Aviral, Clark, Lawrence T, et al.
Created Date
2016

Thin film transistors (TFTs) are being used in a wide variety of applications such as image sensors, radiation detectors, as well as for use in liquid crystal displays. However, there is a conspicuous absence of interface electronics for bridging the gap between the flexible sensors and digitized displays. Hence is the need to build the same. In this thesis, the feasibility of building mixed analog circuits in TFTs are explored and demonstrated. A flexible CMOS op-amp is demonstrated using a-Si:H and pentacene TFTs. The achieved performance is ¡Ö 50 dB of DC open loop gain with unity gain frequency (UGF) …

Contributors
Dey, Aritra, Allee, David R, Bakkaloglu, Bertan, et al.
Created Date
2011

Digital systems are increasingly pervading in the everyday lives of humans. The security of these systems is a concern due to the sensitive data stored in them. The physically unclonable function (PUF) implemented on hardware provides a way to protect these systems. Static random-access memories (SRAMs) are designed and used as a strong PUF to generate random numbers unique to the manufactured integrated circuit (IC). Digital systems are important to the technological improvements in space exploration. Space exploration requires radiation hardened microprocessors which minimize the functional disruptions in the presence of radiation. The design highly efficient radiation-hardened microprocessor for enabling …

Contributors
Medapuram, Sai Bharadwaj, Clark, Lawrence T, Allee, David R, et al.
Created Date
2017

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results …

Contributors
Gogulamudi, Anudeep Reddy, Clark, Lawrence T, Holbert, Keith E, et al.
Created Date
2016

Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and …

Contributors
Ramamurthy, Chandarasekaran, Clark, Lawrence T, Allee, David, et al.
Created Date
2017

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of radiation hardening, essentials of clock design and impact of particle strikes on clocks in detail and presents design techniques for hardening complete clock systems in digital ICs. Since the sequential elements play a key role in deciding the robustness of any clocking strategy, hardened-by-design implementations of triple-mode redundant (TMR) pulse …

Contributors
Chellappa, Srivatsan, Clark, Lawrence T, Holbert, Keith E, et al.
Created Date
2015