Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Date Range
2011 2018


A novel Monte Carlo rejection technique for solving the phonon and electron Boltzmann Transport Equation (BTE), including full many-particle interactions, is presented in this work. This technique has been developed to explicitly model population-dependent scattering within the full-band Cellular Monte Carlo (CMC) framework to simulate electro-thermal transport in semiconductors, while ensuring the conservation of energy and momentum for each scattering event. The scattering algorithm directly solves the many-body problem accounting for the instantaneous distribution of the phonons. The general approach presented is capable of simulating any non-equilibrium phase-space distribution of phonons using the full phonon dispersion without the need of …

Contributors
Sabatti, Flavio Francesco Maria, Saraniti, Marco, Smith, David J, et al.
Created Date
2018

In this work, transport in nanowire materials and nanowire field effect transistors is studied using a full band Monte Carlo simulator within the tight binding basis. Chapter 1 is dedicated to the importance of nanowires and nanoscale devices in present day electronics and the necessity to use a computationally efficient tool to simulate transport in these devices. Chapter 2 discusses the calculation of the full band structure of nanowires based on an atomistic tight binding approach, particularly noting the use of the exact same tight binding parameters for bulk band structures as well as the nanowire band structures. Chapter 3 …

Contributors
Hathwar, Raghuraj, Goodnick, Stephen M, Goodnick, Stephen M, et al.
Created Date
2016

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried …

Contributors
Guerra, Diego, Saraniti, Marco, Saraniti, Marco, et al.
Created Date
2011

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation …

Contributors
Soligo, Riccardo, Saraniti, Marco, Goodnick, Stephen M, et al.
Created Date
2016

This PhD thesis consists of three main themes. The first part focusses on modeling of Silver (Ag)-Chalcogenide glass based resistive memory devices known as the Programmable Metallization Cell (PMC). The proposed models are examined with the Technology Computer Aided Design (TCAD) simulations. In order to find a relationship between electrochemistry and carrier-trap statistics in chalcogenide glass films, an analytical mapping for electron trapping is derived. Then, a physical-based model is proposed in order to explain the dynamic behavior of the photodoping mechanism in lateral PMCs. At the end, in order to extract the time constant of ChG materials, a method …

Contributors
Saremi, Mehdi, Goodnick, Stephen M, Vasileska, Dragica, et al.
Created Date
2017

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all …

Contributors
Gada, Manan Laxmichand, Vasileska, Dragica, Ferry, David K, et al.
Created Date
2013

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in the channel increases, the influence of electromechanical coupling reduces as the electric field in the comprising layers reduces. A Monte Carlo device simulator that implements the theoretical model was developed to model the transport in GaN HEMTs. It is observed that with the coupled formulation, the drain current degradation in …

Contributors
Padmanabhan, Balaji, Vasileska, Dragica, Goodnick, Stephen M, et al.
Created Date
2013

Semiconductor nanowires are important candidates for highly scaled three dimensional electronic devices. It is very advantageous to combine their scaling capability with the high yield of planar CMOS technology by integrating nanowire devices into planar circuits. The purpose of this research is to identify the challenges associated with the fabrication of vertically oriented Si and Ge nanowire diodes and modeling their electrical behavior so that they can be utilized to create unique three dimensional architectures that can boost the scaling of electronic devices into the next generation. In this study, vertical Ge and Si nanowire Schottky diodes have been fabricated …

Contributors
Chandra, Nishant, Goodnick, Stephen M, Tracy, Clarence J, et al.
Created Date
2014

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs …

Contributors
Guo, Da, Vasileska, Dragica, Goodnick, Stephen M, et al.
Created Date
2013

In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN devices operating in DC, small signal AC and large-signal radio-frequency (RF) conditions emphasizing on the microscopic properties that correlate to degradation of device performance such as generation of hot carriers, presence of material defects and self-heating effects. First, a review of concepts concerning GaN technology, devices, reliability mechanisms and PA …

Contributors
Latorre Rey, Alvaro Daniel, Saraniti, Marco, Kitchen, Jennifer, et al.
Created Date
2018