Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
Date Range
2013 2019


Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices in both the light emitting diode (LED) and solar industries, and the present substrate wafering process results in >50% waste, the need for an improved ingot wafering technique exists. The focus of this work is the design and understanding of a novel semiconductor wafering technique that utilizes the nonlinear absorption properties …

Contributors
LeBeau, James, Bowden, Stuart, Honsberg, Christiana, et al.
Created Date
2015

Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona …

Contributors
Yang, Qun, Bowden, Stuart, Honsberg, Christiana, et al.
Created Date
2014

This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that will show the user how to take advantage of the resources present in this library. The results will show how in combination with other Python libraries (Matplotlib), this library becomes a powerful tool for anyone involved in solar power. Dissertation/Thesis Python library source code

Contributors
Reguera, Pedro, Honsberg, Christiana, King, Richard, et al.
Created Date
2018

In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction, screen-printed silicon solar cells are expounded upon. An experiment is conducted in which the thickness of a PECVD deposited anti-reflection coating (ARC) is varied across several samples and modeled as a function of deposition time. Using this statistical model in tandem with reflectance measurements for each sample, the ARC thickness …

Contributors
Pickett, Guy Vernon, Bowden, Stuart, Honsberg, Christiana, et al.
Created Date
2014

Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, …

Contributors
Oh, Jaewon, Bowden, Stuart, Tamizhmani, Govindasamy, et al.
Created Date
2016

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the …

Contributors
Kim, Yeongho, Honsberg, Christiana, Goodnick, Stephen, et al.
Created Date
2015

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the …

Contributors
Zhang, Chaomin, Honsberg, Christiana, King, Richard, et al.
Created Date
2017

GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to obtain the device performance described by detailed balance theory. The photon recycling model has been developed and was applied to investigate the loss mechanisms in the state-of-the-art GaAs-based solar cell structures using PC1D software. A standard fabrication process of the GaAs-based solar cells is as follows: wafer preparation, individual cell …

Contributors
Zhang, Chaomin, Honsberg, Christiana, Goodnick, Stephen, et al.
Created Date
2014

As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are …

Contributors
Sharma, Vivek, Bowden, Stuart, Schroder, Dieter, et al.
Created Date
2013

In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT cells in order to boost the HIT cell’s efficiency. In the first part, the defect states of amorphous silicon (a-Si) and a-Si:H material are studied using density functional theory (DFT). I first employ simulated annealing using molecular dynamics (MD) to create stable configurations of a-Si:H, and then analyze the atomic …

Contributors
Vatan Meidanshahi, Reza, Goodnick, Stephen Marshall, Vasileska, Dragica, et al.
Created Date
2019