Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
  • application/pdf
Date Range
2011 2018


When ferrite materials are used in antenna designs, they introduce some interesting and unique performance characteristics. One of the attractive features, for example, is the ability to reconfigure the center frequency of the antenna. In addition, ferrite materials also introduce a number of challenges in the modeling and simulation of such antennas. In order for the ferrite material to be useful in an antenna design, it usually is subjected to an external magnetic field. This field induces the internal magnetic field inside the ferrite material. The internal field plays a pivotal role in the radiation characteristics of the antenna. Thus, …

Contributors
Kononov, Victor, Balanis, Constantine A., Pan, George, et al.
Created Date
2012

This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices …

Contributors
Tang, Rui, Yu, Hongyu, Jiang, Hanqing, et al.
Created Date
2014

A domain decomposition method for analyzing very large FDTD domains, hundreds of thousands of wavelengths long, is demonstrated by application to the problem of radar scattering in the maritime environment. Success depends on the elimination of artificial scattering from the “sky” boundary and is ensured by an ultra-high-performance absorbing termination which eliminates this reflection at angles of incidence as shallow as 0.03 degrees off grazing. The two-dimensional (2D) problem is used to detail the features of the method. The results are cross-validated by comparison to a parabolic equation (PE) method and surface integral equation method on a 1.7km sea surface …

Contributors
Dowd, Brandon, Diaz, Rodolfo E, Pan, George, et al.
Created Date
2018

Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas. The gain and loss factor of conical horns are revisited in this dissertation based on spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to …

Contributors
Aboserwal, Nafati, Balanis, Constantine A, Aberle, James T, et al.
Created Date
2014

The Milky Way galaxy is a powerful dynamic system that is highly efficient at recycling material. Stars are born out of intergalactic gas and dust, fuse light elements into heavier elements in their cores, then upon stellar death spread material throughout the galaxy, either by diffusion of planetary nebula or by explosive events for high mass stars, and that gas must cool and condense to form stellar nurseries. Though the stellar lifecycle has been studied in detail, relatively little is known about the processes by which hot, diffuse gas ejected by dying stars cools and conglomerates in the interstellar medium …

Contributors
Davis, Kristina, Groppi, Christopher E, Bowman, Judd, et al.
Created Date
2018

Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density and quality factor (QF). The state of the art on-chip inductor is made of an enclosed magnetic thin-film around the current carrying wire for maximum flux amplification. Though the integration of magnetic materials results in enhanced inductor characteristics, this approach has its own challenges and limitations especially in power applications. …

Contributors
Khdour, Mahmoud M., Yu, Hongbin, Pan, George, et al.
Created Date
2014

There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (μr>1;εr>1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any …

Contributors
Sebastian, Tom, Diaz, Rodolfo E, Pan, George, et al.
Created Date
2013

This dissertation proposes a miniature FIR filter that works at microwave frequencies, whose filter response can ideally be digitally programmed. Such a frequency agile device can find applications in cellular communications and wireless networking. The basic concept of the FIR filter utilizes a low loss acoustic waveguide of appropriate geometry that acts as a traveling wave tapped-delay line. The input RF signal is applied by an array of capacitive transducers at various locations on the acoustic waveguide at one end that excites waves of a propagating acoustic mode with varying spatial delays and amplitudes which interfere as they propagate. The …

Contributors
Galinde, Ameya, Abbaspour-Tamijani, Abbas, Chae, Junseok, et al.
Created Date
2013

Two commercial blade antennas for aircraft applications are investigated. The computed results are compared with measurements performed in the ASU ElectroMagnetic Anechoic Chamber (EMAC). The antennas are modeled as mounted on a 13-inch diameter circular ground plane, which corresponds to that of the measurements. Two electromagnetic modeling codes are used in this project to model the antennas and predict their radiation and impedance characteristics: FEKO and WIPL-D Pro. A useful tool of WIPL-D Pro, referred to as WIPL-D Pro CAD, has proven to be convenient for modeling complex geometries. The classical wire monopole was also modeled using high-frequency methods, GO …

Contributors
Zhang, Kaiyue, Balanis, Constantine A., Pan, George, et al.
Created Date
2014

There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter …

Contributors
Yousefi, Tara, Diaz, Rodolfo E, Cochran, Douglas, et al.
Created Date
2017