Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine makes. NASA has designed and publicized a standard benchmark problem for propulsion engine gas path diagnostic that enables comparisons among different engine diagnostic approaches. Some traditional model-based approaches and novel purely data-driven approaches such as machine learning, have been applied to this problem. This study focuses on a different machine …

Contributors
Wu, Qiyu, Si, Jennie, Wu, Teresa, et al.
Created Date
2015

Machine learning technology has made a lot of incredible achievements in recent years. It has rivalled or exceeded human performance in many intellectual tasks including image recognition, face detection and the Go game. Many machine learning algorithms require huge amount of computation such as in multiplication of large matrices. As silicon technology has scaled to sub-14nm regime, simply scaling down the device cannot provide enough speed-up any more. New device technologies and system architectures are needed to improve the computing capacity. Designing specific hardware for machine learning is highly in demand. Efforts need to be made on a joint design …

Contributors
Xu, Zihan, Cao, Yu, Chakrabarti, Chaitali, et al.
Created Date
2017

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep …

Contributors
Mohanty, Abinash, Cao, Yu, Seo, Jae-sun, et al.
Created Date
2018

It is well known that the overall performance of a solar cell is limited by the worst performing areas of the device. These areas are usually micro and nano-scale defects inhomogenously distributed throughout the material. Mitigating and/or engineering these effects is necessary to provide a path towards increasing the efficiency of state-of-the-art solar cells. The first big challenge is to identify the nature, origin and impact of such defects across length scales that span multiple orders of magnitude, and dimensions (time, temperature etc.). In this work, I present a framework based on correlative X-ray microscopy and big data analytics to …

Contributors
West, Bradley Mensing, Bertoni, Mariana I, Verebelyi, Darren, et al.
Created Date
2018

Today's world is seeing a rapid technological advancement in various fields, having access to faster computers and better sensing devices. With such advancements, the task of recognizing human activities has been acknowledged as an important problem, with a wide range of applications such as surveillance, health monitoring and animation. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. An alternative idea I propose is the use of descriptors of the shape of the dynamical attractor as a feature representation for quantification of nature of dynamics. The framework has two main advantages over traditional approaches: …

Contributors
VENKATARAMAN, VINAY, Turaga, Pavan, Papandreou-Suppappol, Antonia, et al.
Created Date
2016

Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts - The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed …

Contributors
Wai, Hoi To, Scaglione, Anna, Berisha, Visar, et al.
Created Date
2017

The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such …

Contributors
Anirudh, Rushil, Turaga, Pavan, Cochran, Douglas, et al.
Created Date
2016