Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


This increasing role of highly automated and intelligent systems as team members has started a paradigm shift from human-human teaming to Human-Autonomy Teaming (HAT). However, moving from human-human teaming to HAT is challenging. Teamwork requires skills that are often missing in robots and synthetic agents. It is possible that adding a synthetic agent as a team member may lead teams to demonstrate different coordination patterns resulting in differences in team cognition and ultimately team effectiveness. The theory of Interactive Team Cognition (ITC) emphasizes the importance of team interaction behaviors over the collection of individual knowledge. In this dissertation, Nonlinear Dynamical …

Contributors
Demir, Mustafa, Cooke, Nancy J, Bekki, Jennifer, et al.
Created Date
2017

We experience spatial separation and temporal asynchrony between visual and haptic information in many virtual-reality, augmented-reality, or teleoperation systems. Three studies were conducted to examine the spatial and temporal characteristic of multisensory integration. Participants interacted with virtual springs using both visual and haptic senses, and their perception of stiffness and ability to differentiate stiffness were measured. The results revealed that a constant visual delay increased the perceived stiffness, while a variable visual delay made participants depend more on the haptic sensations in stiffness perception. We also found that participants judged stiffness stiffer when they interact with virtual springs at faster …

Contributors
Sim, Sung Hun, Wu, Bing, Cooke, Nancy, et al.
Created Date
2017

Across a wide variety of sports, our visual abilities have been proven to profoundly impact performance. Numerous studies have examined the effects of visual training in athletes and have found supporting evidence that performance can be enhanced through vision training. The present case study aimed to expand on research in the field of stroboscopic visual training. To do so, twelve softball players, half novice and half expert, took part in this study. Six underwent a four-week stroboscopic training program and six underwent a four-week non-stroboscopic training program. The quantitative data collected in this case study showed that training group (stroboscopic …

Contributors
Edgerton, Lindsey Ann, Gray, Robert, Branaghan, Russ, et al.
Created Date
2018

This study was undertaken to ascertain to what degree, if any, virtual reality training was superior to monitor based training. By analyzing the results in a 2x3 ANOVA it was found that little difference in training resulted from using virtual reality or monitor interaction to facilitate training. The data did suggest that training involving rich textured environments might be more beneficial under virtual reality conditions, however nothing significant was found in the analysis. It might be possible that significance could be obtained by comparing a virtual reality set-up with higher fidelity to a monitor trial. Dissertation/Thesis

Contributors
Whitson, Richard, Gray, Robert, Branaghan, Russell, et al.
Created Date
2019

A literature search revealed that previous research on the Attentional Blink (AB) has not examined the role of salience in AB results. I examined how salience affects the AB through multiple forms and degrees of salience in target 1 (T1) and target 2 (T2) stimuli. When examining increased size as a form of salience, results showed a more salient T2 increased recall, attenuating the AB. A more salient T1 did not differ from the control, suggesting the salience (increased size) of T2 is an important factor in the AB, while salience (increased size) of T1 does not affect the AB. …

Contributors
Lafko, Stacie, Becker, Vaughn, Branaghan, Russell, et al.
Created Date
2019