Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a …

Contributors
Ghosh, Kunal, Bowden, Stuart, Honsberg, Christiana, et al.
Created Date
2011

Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. …

Contributors
Main, Laura, Munukutla, Lakshmi, Madakannan, Arunachalanadar, et al.
Created Date
2012

The demand for cleaner energy technology is increasing very rapidly. Hence it is important to increase the eciency and reliability of this emerging clean energy technologies. This thesis focuses on modeling and reliability of solar micro inverters. In order to make photovoltaics (PV) cost competitive with traditional energy sources, the economies of scale have been guiding inverter design in two directions: large, centralized, utility-scale (500 kW) inverters vs. small, modular, module level (300 W) power electronics (MLPE). MLPE, such as microinverters and DC power optimizers, oer advantages in safety, system operations and maintenance, energy yield, and component lifetime due to …

Contributors
Manchanahalli Ranganatha, Arkanatha Sastry, Ayyanar, Raja, Karady, George, et al.
Created Date
2015

In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction …

Contributors
Choi, Jeayoung, Honsberg, Christiana, Alford, Terry, et al.
Created Date
2015

This is a two-part thesis. Part 1 presents the seasonal and tilt angle dependence of soiling loss factor of photovoltaic (PV) modules over two years for Mesa, Arizona (a desert climatic condition). Part 2 presents the development of an indoor artificial soil deposition chamber replicating natural dew cycle. Several environmental factors affect the performance of PV systems including soiling. Soiling on PV modules results in a decrease of sunlight reaching the solar cell, thereby reducing the current and power output. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. …

Contributors
Virkar, Shalaim, Tamizhmani, Govindasamy, Srinivasan, Devarajan, et al.
Created Date
2017

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in …

Contributors
Albhrani, Hashem A M H S, Pal, Anamitra, Holbert, Keith E, et al.
Created Date
2020