Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
Subject
Date Range
2011 2019


A process plan is an instruction set for the manufacture of parts generated from detailed design drawings or CAD models. While these plans are highly detailed about machines, tools, fixtures and operation parameters; tolerances typically show up in less formal manner in such plans, if at all. It is not uncommon to see only dimensional plus/minus values on rough sketches accompanying the instructions. On the other hand, design drawings use standard GD&T (Geometrical Dimensioning and tolerancing) symbols with datums and DRFs (Datum Reference Frames) clearly specified. This is not to say that process planners do not consider tolerances; they are …

Contributors
Haghighi, Payam, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2015

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage …

Contributors
Krishnan, Kapil, Peralta, Pedro, Mignolet, Marc, et al.
Created Date
2013

As additive manufacturing grows as a cost-effective method of manufacturing, lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most critical thermal devices in the thermal industry. Additive manufacturing brings us a design freedom no other manufacturing technology offers. Advancements in 3D printing lets us reimagine and optimize the performance of the heat exchangers with an incredible design flexibility previously unexplored due to manufacturing constraints. In this research, the additive manufacturing technology and the heat exchanger design are explored to find a unique solution to improve the efficiency of heat exchangers. This includes creating a Triply …

Contributors
Chandrasekaran, Gokul, Phelan, Patrick E, Rykaczewski, Konrad, et al.
Created Date
2018

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and …

Contributors
Ansari, Adil, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2019

The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction algorithms, there exist several volume-of-fluid transportation algorithms. This paper will discuss two operator-splitting advection algorithms and an unsplit advection algorithm. Using these three interface reconstruction algorithms, and three advection algorithms, a comparison will be drawn to see how different combinations …

Contributors
Kedelty, Dominic Sebastian, Herrmann, Marcus, Huang, Huei-Ping, et al.
Created Date
2015

A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered. The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary conditions can be reformulated in order to be used by the framework. As an example, the reformulation is presented for systems governed by Schr¨odinger equation, parabolic type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types. The second form of PDEs of interest …

Contributors
Meyer, Evgeny, Peet, Matthew, Berman, Spring, et al.
Created Date
2016

A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are …

Contributors
Wei, Haoyang, Liu, Yongming, Jiang, Hanqing, et al.
Created Date
2016

The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used to overcome them. One of the major contributions of this research is the method by which easy traversal between different ideation methods with different components were facilitated, to support both creativity and functional quality. Another important part of the framework is the sensing of ideation states (blocks/ unfettered ideation) and …

Contributors
Mohan, Manikandan, Shah, Jami J, Huebner, Kenneth, et al.
Created Date
2011

It is well known that the geckos can cling to almost any surface using highly dense micro/nano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition. This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range …

Contributors
Mate, Sunil Munjaji, Marvi, Hamidreza, Rykaczewski, Konrad, et al.
Created Date
2016

Owing to the surge in development of endovascular devices such as coils and flow diverter stents, doctors are inclined to approach surgical cases non-invasively more often than before. Treating brain aneurysms as a bulging of a weakened area of a blood vessel is no exception. Therefore, promoting techniques that can help surgeons have a better idea of treatment outcomes are of invaluable importance. In order to investigate the effects of these devices on intra-aneurysmal hemodynamics, the conventional computational fluid dynamics (CFD) approach uses the explicit geometry of the device within an aneurysm and discretizes the fluid domain to solve the …

Contributors
Yadollahi Farsani, Hooman, Herrmann, Marcus, Frakes, David, et al.
Created Date
2018

Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface. A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis …

Contributors
Kannan, Karthik, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2014

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models …

Contributors
Lee, Jong Hwa, Jindrich, Devin L., Artemiadis, Panagiotis K., et al.
Created Date
2014

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell …

Contributors
Koo, Bonsung, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2017

This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion …

Contributors
Adams, Wade Silas, Aukes, Daniel, Sugar, Thomas, et al.
Created Date
2019

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics …

Contributors
Chen, Hailong, Liu, Yongming, Jiao, Yang, et al.
Created Date
2015

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components …

Contributors
Gorman, Brandon Tom, Johnson, Nathan G, Stechel, Ellen B, et al.
Created Date
2017

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on …

Contributors
Lee, Soochan, Phelan, Patrick E, Wu, Carole-Jean, et al.
Created Date
2015

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, …

Contributors
Kurapatti Ravi, Abinesh, Hao Hsu, Keng, Hildreth, Owen, et al.
Created Date
2016

This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in their motion and task switching policies. We model the population dynamics of the robotic swarm as a set of advection-diffusion- reaction (ADR) partial differential equations (PDEs). Specifically, we consider a linear parabolic PDE model that is bilinear in the robots' velocity and task-switching rates. These parameters constitute a set of time-dependent control variables that can be optimized and transmitted to …

Contributors
Elamvazhuthi, Karthik, Berman, Spring Melody, Peet, Matthew Monnig, et al.
Created Date
2014

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies …

Contributors
Barkan, Andrew Robert, Artemiadis, Panagiotis, Lee, Hyunglae, et al.
Created Date
2016

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry …

Contributors
Juarez, Joseph Moses, Montgomery, Douglas C., Borror, Connie M., et al.
Created Date
2012

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first …

Contributors
De Gregorio, Michael, Santos, Veronica J., Artemiadis, Panagiotis K., et al.
Created Date
2013

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring …

Contributors
Huff, Daniel William, Papandreou-Suppappola, Antonia, Kovvali, Narayan, et al.
Created Date
2013

Robotic joints can be either powered or passive. This work will discuss the creation of a passive and a powered joint system as well as the combination system being both powered and passive along with its benefits. A novel approach of analysis and control of the combination system is presented. A passive and a powered ankle joint system is developed and fit to the field of prosthetics, specifically ankle joint replacement for able bodied gait. The general 1 DOF robotic joint designs are examined and the results from testing are discussed. Achievements in this area include the able bodied gait …

Contributors
Holgate, Robert, Sugar, Thomas, Artemiades, Panagiotis, et al.
Created Date
2017

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the …

Contributors
Moncada, Albert, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2012

The United States Department of Energy (DOE) has always held the safety and reliability of the nation's nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have been instrumental in maximizing energy generation from nuclear power plants and minimizing waste. One aspect of the DOE Fuel Cycle Research and Development Advanced Fuels Campaign is to improve the mechanical properties of uranium dioxide (UO2) for nuclear fuel applications. In an effort to improve the performance of UO2, by increasing the fracture toughness and ductility, small quantities of oxide materials have been added to samples to act …

Contributors
McDonald, Robert Edward, Peralta, Pedro, Rajagopalan, Jagannathan, et al.
Created Date
2014

The flow of liquid PDMS (10:1 v/v base to cross-linker ratio) in open, rectangular silicon micro channels, with and without a hexa-methyl-di-silazane (HMDS) or poly-tetra-fluoro-ethylene (PTFE) (120 nm) coat, was studied. Photolithographic patterning and etching of silicon wafers was used to create micro channels with a range of widths (5-50 μm) and depths (5-20 μm). The experimental PDMS flow rates were compared to an analytical model based on the work of Lucas and Washburn. The experimental flow rates closely matched the predicted flow rates for channels with an aspect ratio (width to depth), p, between one and two. Flow rates …

Contributors
Sowers, Timothy Wayne, Rajagopalan, Jagannathan, Herrmann, Marcus, et al.
Created Date
2014

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the …

Contributors
Veeresh, Pawan Manjunath, Oswald, Jay, Jiang, Hanqing, et al.
Created Date
2016

Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU Design Automation Lab. In past research, an interactive software test bed (Holistic Ideation Tool - version 1) was developed to explore logical ideation methods. Ideation states were identified and ideation strategies were developed to overcome common ideation blocks. The next version (version 2) of the holistic ideation tool added Cascading …

Contributors
Narsale, Sumit Sunil, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2014

Small metallic parts of size less than 1mm, with features measured in tens of microns, with tolerances as small as 0.1 micron are in demand for the research in many fields such as electronics, optics, and biomedical engineering. Because of various drawbacks with non-mechanical micromanufacturing processes, micromilling has shown itself to be an attractive alternative manufacturing method. Micromilling is a microscale manufacturing process that can be used to produce a wide range of small parts, including those that have complex 3-dimensional contours. Although the micromilling process is superficially similar to conventional-scale milling, the physical processes of micromilling are unique due …

Contributors
CHUKEWAD, YOGESH MADHAVRAO, SODEMANN, ANGELA A, DAVIDSON, JOSEPH K, et al.
Created Date
2014

Liquid injection in cross flows has applications in gas-turbine engines, afterburners and some rocket combustion chambers. Integral form of the conservation equations has been used to find a cubic formula for the drop size in liquid sprays in cross flows. Similar to the work on axial liquid sprays, the energy balance dictates that the initial kinetic energy of the gas and injected liquid be distributed into the final surface tension energy, kinetic energy of the gas and droplets, and viscous dissipation incurred. Kinetic energy of the cross flow is added to the energy balance. Then, only the viscous dissipation term …

Contributors
Park, Jung Eun, Lee, Taewoo, Huang, Huei-ping, et al.
Created Date
2018

Cavitation erosion is a significant cause of wear in marine components, such as impellers, propellers or rudders. While the erosion process has been widely studied on metals, the effect of cavitation on polymers is not well-understood. The stress response in metals differs greatly from that of polymers, e.g. rate and temperature effects are far more important, thus damage and wear mechanisms of polymers under cavitating flows are significantly different. In this work, heat-driven failure caused by viscous dissipation and void nucleation resulting from tensile stresses arising from stress wave reflections are investigated as two possible material failure mechanisms. As a …

Contributors
Panwar, Ajay, Oswald, Jay, Dooley, Kevin, et al.
Created Date
2015

Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery dates. Discrete Event Simulation (DES) models are often used to model these complex manufacturing systems in order to generate estimates of the cycle time distribution. However, building models and executing them consumes sufficient time and resources. The objective of this research is to determine the influence of input parameters on …

Contributors
Salvi, Tanushree Ashutosh, Bekki, Jennifer M, Sodemann, Angela, et al.
Created Date
2017

When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications. To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when …

Contributors
Kocher, Jordan, Wang, Robert, Phelan, Patrick, et al.
Created Date
2019

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain …

Contributors
Turnage, Scott Andrew, Solanki, Kiran N, Rajagopalan, Jagannathan, et al.
Created Date
2017

Monte Carlo simulations are traditionally carried out for the determination of the amplification of forced vibration response of turbomachine/jet engine blades to mistuning. However, this effort can be computationally time consuming even when using the various reduced order modeling techniques. Accordingly, some investigations in the past have focused on obtaining simple approximate estimates for this amplification. In particular, two of these have proposed the use of harmonic patterns of the blade properties around the disk as an approximate alternative to the many random patterns of Monte Carlo analyses. These investigations, while quite encouraging, have relied solely on single degree of …

Contributors
Sahoo, Saurav, Mignolet, Marc Paul, Chattopadhyay, Aditi, et al.
Created Date
2014

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used …

Contributors
Kulkarni, Sujay, Huang, Huei-Ping, Calhoun, Ronald, et al.
Created Date
2014

ABSTRACT A large fraction of the total energy consumption in the world comes from heating and cooling of buildings. Improving the energy efficiency of buildings to reduce the needs of seasonal heating and cooling is one of the major challenges in sustainable development. In general, the energy efficiency depends on the geometry and material of the buildings. To explore a framework for accurately assessing this dependence, detailed 3-D thermofluid simulations are performed by systematically sweeping the parameter space spanned by four parameters: the size of building, thickness and material of wall, and fractional size of window. The simulations incorporate realistic …

Contributors
Jain, Gaurav, Huang, Huei-Ping, Ren, Yi, et al.
Created Date
2016

Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification can be separated into two major tasks; tolerance schema generation and tolerance value specification. This thesis will focus on the latter part of automated tolerance specification, namely tolerance value allocation and analysis. The tolerance schema (sans values) required prior to these tasks have already been generated by the auto-tolerancing software. …

Contributors
Biswas, Deepanjan, Shah, Jami J, Davidson, Joseph, et al.
Created Date
2016

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research …

Contributors
Puruhito, Emil, Sommerfeld, Milton, Gintz, Jerry, et al.
Created Date
2014

Metal castings are selectively machined-based on dimensional control requirements. To ensure that all the finished surfaces are fully machined, each as-cast part needs to be measured and then adjusted optimally in its fixture. The topics of this thesis address two parts of this process: data translations and feature-fitting clouds of points measured on each cast part. For the first, a CAD model of the finished part is required to be communicated to the machine shop for performing various machining operations on the metal casting. The data flow must include GD&T specifications along with other special notes that may be required …

Contributors
Ramnath, Satchit, Shah, Jami J, Davidson, Joseph, et al.
Created Date
2016

Parts are always manufactured with deviations from their nominal geometry due to many reasons such as inherent inaccuracies in the machine tools and environmental conditions. It is a designer job to devise a proper tolerance scheme to allow reasonable freedom to a manufacturer for imperfections without compromising performance. It takes years of experience and strong practical knowledge of the device function, manufacturing process and GD&T standards for a designer to create a good tolerance scheme. There is almost no theoretical resource to help designers in GD&T synthesis. As a result, designers often create inconsistent and incomplete tolerance schemes that lead …

Contributors
Hejazi, Sayed Mohammad, Shah, Jami J, Davidson, Joseph K, et al.
Created Date
2016

The Basilisk lizard is known for its agile locomotion capabilities on granular and aquatic media making it an impressive model organism for studying multi-terrain locomotion mechanics. The work presented here is aimed at understanding locomotion characteristics of Basilisk lizards through a systematic series of robotic and animal experiments. In this work, a Basilisk lizard inspired legged robot with bipedal and quadrupedal locomotion capabilities is presented. A series of robot experiments are conducted on dry and wet (saturated) granular media to determine the effects of gait parameters and substrate saturation, on robot velocity and energetics. Gait parameters studied here are stride …

Contributors
Jayanetti, Vidu, Marvi, Hamid, Emady, Heather, et al.
Created Date
2019

Locomotion of microorganisms is commonly observed in nature and some aspects of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and bubble generation. Regardless of the source of the locomotion, the motion of any motor can be characterized by the translational and rotational velocity and effective diffusivity. In a uniform environment the long-time motion of a motor can be fully characterized by the effective diffusivity. In this work it is shown that when motors possess both translational and rotational velocity the motor transitions from a short-time diffusivity to …

Contributors
Marine, Nathan Arasmus, Posner, Jonathan D, Adrian, Ronald J, et al.
Created Date
2013

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one …

Contributors
Sun, Xiaoda, Rykaczewski, Konrad, Lin, Jerry, et al.
Created Date
2017

The main objective of this project was to create a framework for holistic ideation and investigate the technical issues involved in its implementation. In previous research, logical ideation methods were explored, ideation states were identified, and tentative set of ideation blocks with strategies were incorporated in an interactive software testbed. As a subsequent study, in this research, intuitive methods and their strategies were investigated and characterized, a framework to organize the components of ideation (both logical and intuitive) was devised, and different ideation methods were implemented based on the framework. One of the major contributions of this research is the …

Contributors
Chen, Ying, Shah, Jami, Huebner, Kenneth, et al.
Created Date
2012

This study uses Computational Fluid Dynamics (CFD) modeling to analyze the dependence of wind power potential and turbulence intensity on aerodynamic design of a special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three major geometric parameters of the building: (i) the height of the building, (ii) the depth of the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied from 8 m to 24 m. Likewise, the gap depth is varied from 3 m …

Contributors
Kailkhura, Gargi, Huang, Huei-Ping, Rajagopalan, Jagannathan, et al.
Created Date
2017

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting …

Contributors
Peshlakai, Aaron Ron, Phelan, Patrick, Trimble, Steven, et al.
Created Date
2012

Multiaxial mechanical fatigue of heterogeneous materials has been a significant cause of concern in the aerospace, civil and automobile industries for decades, limiting the service life of structural components while increasing time and costs associated with inspection and maintenance. Fiber reinforced composites and light-weight aluminum alloys are widely used in aerospace structures that require high specific strength and fatigue resistance. However, studying the fundamental crack growth behavior at the micro- and macroscale as a function of loading history is essential to accurately predict the residual fatigue life of components and achieve damage tolerant designs. The issue of mechanical fatigue can …

Contributors
Datta, Siddhant, Chattopadhyay, Aditi, Liu, Yongming, et al.
Created Date
2018

In order to achieve higher gas turbine efficiency, the main gas temperature at turbine inlet has been steadily increased from approximately 900&deg;C to about 1500&deg;C over the last few decades. This temperature is higher than the maximum acceptable temperature for turbine internals. The hot main gas may get ingested into the space between rotor and stator, the rotor-stator disk cavity in a stage because of the pressure differential between main gas annulus and the disk cavity. To reduce this ingestion, the disk cavity is equipped with a rim seal; additionally, secondary (purge) air is supplied to the cavity. Since the …

Contributors
Singh, Prashant, Roy, Ramendra P, Mignolet, Marc, et al.
Created Date
2014