Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Mime Type
Subject
Date Range
2011 2019


Stereolithography files (STL) are widely used in diverse fields as a means of describing complex geometries through surface triangulations. The resulting stereolithography output is a result of either experimental measurements, or computer-aided design. Often times stereolithography outputs from experimental means are prone to noise, surface irregularities and holes in an otherwise closed surface. A general method for denoising and adaptively smoothing these dirty stereolithography files is proposed. Unlike existing means, this approach aims to smoothen the dirty surface representation by utilizing the well established levelset method. The level of smoothing and denoising can be set depending on a per-requirement basis …

Contributors
Kannan, Karthik, Herrmann, Marcus, Peet, Yulia, et al.
Created Date
2014

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models …

Contributors
Lee, Jong Hwa, Jindrich, Devin L., Artemiadis, Panagiotis K., et al.
Created Date
2014

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell …

Contributors
Koo, Bonsung, Chattopadhyay, Aditi, Dai, Lenore, et al.
Created Date
2017

This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion …

Contributors
Adams, Wade Silas, Aukes, Daniel, Sugar, Thomas, et al.
Created Date
2019

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics …

Contributors
Chen, Hailong, Liu, Yongming, Jiao, Yang, et al.
Created Date
2015

Fluids such as steam, oils, and molten salts are commonly used to store and transfer heat in a concentrating solar power (CSP) system. Metal oxide materials have received increasing attention for their reversible reduction-oxidation (redox) reaction that permits receiving, storing, and releasing energy through sensible and chemical potential. This study investigates the performance of a 111.7 MWe CSP system coupled with a thermochemical energy storage system (TCES) that uses a redox active metal oxide acting as the heat transfer fluid. A one-dimensional thermodynamic model is introduced for the novel CSP system design, with detailed designs of the underlying nine components …

Contributors
Gorman, Brandon Tom, Johnson, Nathan G, Stechel, Ellen B, et al.
Created Date
2017

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on …

Contributors
Lee, Soochan, Phelan, Patrick E, Wu, Carole-Jean, et al.
Created Date
2015

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, …

Contributors
Kurapatti Ravi, Abinesh, Hao Hsu, Keng, Hildreth, Owen, et al.
Created Date
2016

This thesis considers two problems in the control of robotic swarms. Firstly, it addresses a trajectory planning and task allocation problem for a swarm of resource-constrained robots that cannot localize or communicate with each other and that exhibit stochasticity in their motion and task switching policies. We model the population dynamics of the robotic swarm as a set of advection-diffusion- reaction (ADR) partial differential equations (PDEs). Specifically, we consider a linear parabolic PDE model that is bilinear in the robots' velocity and task-switching rates. These parameters constitute a set of time-dependent control variables that can be optimized and transmitted to …

Contributors
Elamvazhuthi, Karthik, Berman, Spring Melody, Peet, Matthew Monnig, et al.
Created Date
2014

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies …

Contributors
Barkan, Andrew Robert, Artemiadis, Panagiotis, Lee, Hyunglae, et al.
Created Date
2016