Skip to main content

ASU Electronic Theses and Dissertations

This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at

Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification can be separated into two major tasks; tolerance schema generation and tolerance value specification. This thesis will focus on the latter part of automated tolerance specification, namely tolerance value allocation and analysis. The tolerance schema (sans values) required prior to these tasks have already been generated by the auto-tolerancing software. …

Biswas, Deepanjan, Shah, Jami J, Davidson, Joseph, et al.
Created Date

This thesis concerns the role of geometric imperfections on assemblies in which the location of a target part is dependent on supports at two features. In some applications, such as a turbo-machine rotor that is supported by a series of parts at each bearing, it is the interference or clearance at a functional target feature, such as at the blades that must be controlled. The first part of this thesis relates the limits of location for the target part to geometric imperfections of other parts when stacked-up in parallel paths. In this section parts are considered to be rigid (non-deformable). …

Jaishankar, Lupin Niranjan, Davidson, Joseph K, Shah, Jami J, et al.
Created Date