Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed …

Contributors
Moeller, Karla, DeNardo, Dale, Angilletta, Michael, et al.
Created Date
2016

I examined how competition affects the way animals use thermal resources to control their body temperature. Currently, biologists use a cost benefit analysis to predict how animals should regulate their body temperature. This current theory of thermoregulation does not adequately predict how animals thermoregulate in the wild. While the model works well for animals in low cost habitats, it does not work as well for animals in high cost habitats. For example, animals that are in habitats of low thermal quality thermoregulate more precisely than predicted by the current model. One reason these predictions may be wrong is that they …

Contributors
Borchert, Jason, Angilletta Jr., Michael, Pratt, Stephen, et al.
Created Date
2018