Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.




This dissertation presents a new methodology for the sustainable and optimal allocation of water for a river basin management area that maximizes sustainable net economic benefit over the long-term planning horizon. The model distinguishes between short and long-term planning horizons and goals using a short-term modeling component (STM) and a long term modeling component (LTM) respectively. An STM optimizes a monthly allocation schedule on an annual basis in terms of maximum net economic benefit. A cost of depletion based upon Hotelling’s exhaustible resource theory is included in the STM net benefit calculation to address the non-use value of groundwater. An …

Contributors
Oxley, Robert Louis, Mays, Larry, Fox, Peter, et al.
Created Date
2015

The problem concerning the access to energy has become an increasingly acute matter of concern in low-income areas. Currently an estimated 1.2 billion people don't have access to energy (IEA, 2014). Following the declaration of 2012 as "The International Year of Sustainable Energy for All" by the United Nations General Assembly (UNDP, 2014), this alarming situation of energy poverty has resulted in the creation of new partnerships between governments, NGOs (Non-Governmental Organization), and large multi-national corporations. This study is focused on the evaluation of sustainability of a development project in Gutu, Zimbabwe that is initiated by Schneider Electric Corporation's BipBop …

Contributors
Demirciler, Barlas, Parmentier, Mary Jane, Grossman, Gary, et al.
Created Date
2014

Phosphorus (P) is an essential resource for global food security, but global supplies are limited and demand is growing. Demand reductions are critical for achieving P sustainability, but recovery and re-use is also required. Wastewater treatment plants and livestock manures receive considerable attention for their P content, but municipal organic waste is another important source of P to address. Previous research identified the importance of diverting this waste stream from landfills for recovering P, but little has been done to identify the collection and processing mechanisms required, or address the existing economic barriers. In my research, I conducted a current …

Contributors
Stoltzfus, Jared Stoltzfus, Childers, Daniel, Basile, George, et al.
Created Date
2016

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain. Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, …

Contributors
Gupta, Vaibhav, Calhoun, Ronald J, Dooley, Kevin, et al.
Created Date
2014

Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and forms an intermediate product which then releases CO2 at higher temperature. The high temperature necessary to strip CO2 is provided by steam extracted from the powerplant thus reducing the net output of the powerplant by 25% to 35%. The reduction in electricity output for the same input of coal increases …

Contributors
Sekar, Ashok, Williams, Eric, Chester, Mikhail, et al.
Created Date
2012