Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2010 2019


Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United …

Contributors
Hembade, Lavannya, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2012

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic …

Contributors
Hoffarth, Canio, Rajan, Subramaniam, Goldberg, Robert, et al.
Created Date
2016

In this thesis, the author described a new genetic algorithm based on the idea: the better design could be found at the neighbor of the current best design. The details of the new genetic algorithm are described, including the rebuilding process from Micro-genetic algorithm and the different crossover and mutation formation. Some popular examples, including two variable function optimization and simple truss models are used to test this algorithm. In these study, the new genetic algorithm is proved able to find the optimized results like other algorithms. Besides, the author also tried to build one more complex truss model. After …

Contributors
Ding, Xiaosu, Hjelmstad, keith, Neithalath, Narayanan, et al.
Created Date
2015

A simplified bilinear moment-curvature model are derived based on the moment-curvature response generated from a parameterized stress-strain response of strain softening and or strain-hardening material by Dr. Barzin Mobasher and Dr. Chote Soranakom. Closed form solutions are developed for deflection calculations of determinate beams subjected to usual loading patterns at any load stage. The solutions are based on a bilinear moment curvature response characterized by the flexural crack initiation and ultimate capacity based on a deflection hardening behavior. Closed form equations for deflection calculation are presented for simply supported beams under three point bending, four point bending, uniform load, concentrated …

Contributors
Wang, Xinmeng, Mobasher, Barzin, Rajan, Subramaniam, et al.
Created Date
2015

The main objective of this study is to investigate the mechanical behaviour of cementitious based composites subjected dynamic tensile loading, with effects of strain rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening model based on finite difference model, previously developed at Arizona State University were used to help study the bonding mechanism between fibre and matrix, and the phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension tests were conducted on strain-hardening cement-based composites (SHCC), textile reinforced concrete (TRC) with and without addition of short fibres, at the strain rates …

Contributors
Yao, Yiming, Barzin, Mobasher, Rajan, Subramaniam, et al.
Created Date
2013

This report analyzed the dynamic response of a long, linear elastic concrete bridge subject to spatially varying ground displacements as well as consistent ground displacements. Specifically, the study investigated the bridge’s response to consistent ground displacements at all supports (U-NW), ground displacements with wave passage effects and no soil profile variability (U-WP), and ground displacements with both wave passage effects and soil profile variability (V-WP). Time-history ground displacements were taken from recordings of the Loma Prieta, Duzce, and Chuetsu earthquakes. The two horizontal components of each earthquake time-history displacement record were applied to the bridge supports in the transverse and …

Contributors
Seawright, Jordan Michael, Hjelmstad, Keith, Rajan, Subramaniam, et al.
Created Date
2019

The focus of this investigation is on the optimum placement of a limited number of dampers, fewer than the number of blades, on a bladed disk to induce the smallest amplitude of blade response. The optimization process considers the presence of random mistuning, i.e. small involuntary variations in blade stiffness properties resulting, say, from manufacturing variability. Designed variations of these properties, known as intentional mistuning, is considered as an option to reduce blade response and the pattern of two blade types (A and B blades) is then part of the optimization in addition to the location of dampers on the …

Contributors
Murthy, Raghavendra Narasimha, Mignolet, Marc P, Rajan, Subramaniam, et al.
Created Date
2012

Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and …

Contributors
Mika, Krista Nicole, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2014

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these …

Contributors
Vance, Kirk Erik, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and …

Contributors
Opie, Saul, Peralta, Pedro, Loomis, Eric, et al.
Created Date
2017

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others. The current study focuses on the fundamental understanding of such functional composites, from their microstructural design …

Contributors
Arora, Aashay, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

This research summarizes the validation testing completed for the material model MAT213, currently implemented in the LS-DYNA finite element program. Testing was carried out using a carbon fiber composite material, T800-F3900. Stacked-ply tension and compression tests were performed for open-hole and full coupons. Comparisons of experimental and simulation results showed a good agreement between the two for metrics including, stress-strain response and displacements. Strains and displacements in the direction of loading were better predicted by the simulations than for that of the transverse direction. Double cantilever beam and end notched flexure tests were performed experimentally and through simulations to determine …

Contributors
Holt, Nathan T, Rajan, Subramaniam, Mobasher, Barzin, et al.
Created Date
2018

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can …

Contributors
Vokshi, Erblina, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2012

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such …

Contributors
Schmidt, Nathan William, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing …

Contributors
Shaffer, Joseph Woodrow, Jiang, Hanqing, Rajan, Subramaniam, et al.
Created Date
2011

The football helmet is a device used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. The current design methodology of using a hard shell with an energy absorbing liner may be adequate for minimizing TBI, however it has had less effect in minimizing mTBI. The latest research in brain injury mechanisms has established that the current design methodology has produced a helmet to reduce linear acceleration of the head. However, angular accelerations also have an adverse effect on the brain response, and must be investigated as a …

Contributors
Darling, Timothy Karl, Rajan, Subramaniam, Muthuswamy, Jitendran, et al.
Created Date
2014

The studies on aluminosilicate materials to replace traditional construction materials such as ordinary Portland cement(OPC) to reduce the effects caused has been an important research area for the past decades. Many properties like strength have already been studied and the primary focus is to learn about the reaction mechanism and the effect of the parameters on the formed products. The aim of this research was to explore the structural changes and reaction product analysis of geopolymers (Slag & Fly Ash) using Fourier transform infrared spectroscopy (FTIR) and deconvolution techniques. Spectroscopic techniques give valuable information at a molecular level but not …

Contributors
Madavarapu, Sateesh Babu, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

As more and more stadia structures nowadays are being built by making use of new high strength building materials which tend to be lighter than the "old" ones, composite systems and also the fact that engineers, contractors and clients want their structures as optimized as possible, in terms of minimal materials used, there is an inevitable side effect that comes with this. The result is that structures are more flexible, and thus they become susceptible to undergone vibration problems due to the action of dynamic loading. Pop/rock concerts, exhibitions, boxing matches, and so forth are staged to supplement the football/sport …

Contributors
Aldaco Lopez, Manuel, Hjelmstad, Keith D, Rajan, Subramaniam, et al.
Created Date
2014

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar® 49, under ballistic loading. Previously developed finite element models used to validate the consistency …

Contributors
Fein, Jonathan, Rajan, Subramaniam, Mobasher, Barzin, et al.
Created Date
2012

The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite …

Contributors
Morea, Mihai Ion, Rajan, Subramaniam, Arizona State University
Created Date
2011

Manufacture of building materials requires significant energy, and as demand for these materials continues to increase, the energy requirement will as well. Offsetting this energy use will require increased focus on sustainable building materials. Further, the energy used in building, particularly in heating and air conditioning, accounts for 40 percent of a buildings energy use. Increasing the efficiency of building materials will reduce energy usage over the life time of the building. Current methods for maintaining the interior environment can be highly inefficient depending on the building materials selected. Materials such as concrete have low thermal efficiency and have a …

Contributors
Sharma, Breeann, Neithalath, Narayanan, Mobasher, Barzin, et al.
Created Date
2013

The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use of alternative cementitious materials at high levels of volume replacement. Limestone, an abundant material is used as a filler in low water-to-powder concretes where a substantial fraction of the portland cement remains unhydrated. At high volume OPC replacement, 20% and 35%, the combination of limestone and an alumina source has …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2014

Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental mechanical model and extend to complicated cases. In this dissertation, a coupled large deformation and diffusion model regarding gel's swelling behavior is presented. In this model, free-energy of the total gel is constituted by polymer stretching energy and polymer-solvent mixing energy. In-house nonlinear finite element code is implemented with fast …

Contributors
Zhang, Jiaping, Jiang, Hanqing, Peralta, Pedro, et al.
Created Date
2012

Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments. In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code. …

Contributors
Liao, Xiao, Oswald, Jay, Liu, Yongming, et al.
Created Date
2016

Buildings consume a large portion of the world's energy, but with the integration of phase change materials (PCMs) in building elements this energy cost can be greatly reduced. The addition of PCMs into building elements, however, becomes a challenge to model and analyze how the material actually affects the energy flow and temperatures in the system. This research work presents a comprehensive computer program used to model and analyze PCM embedded wall systems. The use of the finite element method (FEM) provides the tool to analyze the energy flow of these systems. Finite element analysis (FEA) can model the transient …

Contributors
Stockwell, Amie, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2013

Sustainable materials and methods have achieved a pivotal role in the research plethora of the new age due to global warming. Cement production is responsible in contributing to 5% of global CO2 emissions. Complete replacement of cement by alkaline activation of aluminosilicate waste materials such as slag and fly ash is a major advancement towards reducing the adverse impacts of cement production. Comprehensive research has been done, to understand the optimized composition and hydration products. The focus of this dissertation is to understand the multiscale behavior ranging from early age properties, fundamental material structure, fracture and crack resistance properties, durability …

Contributors
Dakhane, Akash, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free …

Contributors
Fei, Huiyang, Jiang, Hanqing, Chawla, Nikhilesh, et al.
Created Date
2011

The exceptional mechanical properties of polymers with heterogeneous structure, such as the high toughness of polyethylene and the excellent blast-protection capability of polyurea, are strongly related to their morphology and nanoscale structure. Different polymer microstructures, such as semicrystalline morphology and segregated nanophases, lead to coordinated molecular motions during deformation in order to preserve compatibility between the different material phases. To study molecular relaxation in polyethylene, a coarse-grained model of polyethylene was calibrated to match the local structural variable distributions sampled from supercooled atomistic melts. The coarse-grained model accurately reproduces structural properties, e.g., the local structure of both the amorphous and …

Contributors
Li, Yiyang, Oswald, Jay, Rajan, Subramaniam, et al.
Created Date
2017

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize …

Contributors
ALGHAMDI, HUSSAM SUHAIL, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2019

In order to verify the dispersive nature of transverse displacement in a beam, a deep understanding of the governing partial differential equation is developed. Using the finite element method and Newmark’s method, along with Fourier transforms and other methods, the aim is to obtain consistent results across each numerical technique. An analytical solution is also analyzed for the Euler-Bernoulli beam in order to gain confidence in the numerical techniques when used for more advance beam theories that do not have a known analytical solution. Three different beam theories are analyzed in this report: The Euler-Bernoulli beam theory, Rayleigh beam theory …

Contributors
Tschetter, Ryan William, Hjelmstad, Keith D, Rajan, Subramaniam, et al.
Created Date
2016

Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of …

Contributors
Aguayo, Matthew Joseph, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2018

Properties of random porous material such as pervious concrete are strongly dependant on its pore structure features. This research deals with the development of an understanding of the relationship between the material structure and the mechanical and functional properties of pervious concretes. The fracture response of pervious concrete specimens proportioned for different porosities, as a function of the pore structure features and fiber volume fraction, is studied. Stereological and morphological methods are used to extract the relevant pore structure features of pervious concretes from planar images. A two-parameter fracture model is used to obtain the fracture toughness (KIC) and critical …

Contributors
Rehder, Benjamin Douglas, Neithalath, Narayanana, Mobasher, Barzin, et al.
Created Date
2013

Pultrusion manufacturing technique stands at the forefront for efficient production of continuous, uniform concrete composites for use in large scale structural applications. High volume and low labor, among other benefits such as improved impregnation and better sample consistency, stand as some of the crucial advances found in automated pultrusion. These advantages introduce textile reinforced concrete (TRC) composites as a potential surrogate for wood, light gauge steel, and other common structural materials into an ever changing and broadening market of industrial grade structural sections. With the potential modifications of textile geometry, textile type, section geometry, and connection type, the options presented …

Contributors
Bauchmoyer, Jacob MacGregor, Mobasher, Barzin, Rajan, Subramaniam, et al.
Created Date
2017

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis …

Contributors
Wang, Yuting, Mignolet, Marc P, Jiang, Hanqing, et al.
Created Date
2017

Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in the last decade alone. This dissertation concentrates on design optimization of such, about-to-be modular, structures by implementing AISC 2010 design requirements. Along with a discussion on and classification of lateral load resisting systems, a few design optimization cases are also being studied. The design optimization results of full scale three …

Contributors
Unde, Yogesh Vinod, Rajan, Subramaniam, Neithalath, Narayanan, et al.
Created Date
2016

Ordered buckling of stiff films on elastomeric substrates has many applications in the field of stretchable electronics. Mechanics plays a very important role in such systems. A full three dimensional finite element analysis studying the pattern of wrinkles formed on a stiff film bonded to a compliant substrate under the action of a compressive force has been widely studied. For thin films, this wrinkling pattern is usually sinusoidal, and for wide films the pattern depends on loading conditions. The present study establishes a relationship between the effect of the load applied at an angle to the stiff film. A systematic …

Contributors
Kondagari, Swathi Sri, Jiang, Hanqing, Yu, Hongyu, et al.
Created Date
2010

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems. The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were …

Contributors
Inbasekaran, Aditya, Neithalath, Narayanan, Rajan, Subramaniam, et al.
Created Date
2016

Buildings and other structures, all components and cladding thereof, shall be designed and constructed to resist the wind loads are required in all wind codes. Simple quasi-static treatment of wind loads, which is universally applied to design of low to medium-rise structures, can be either overly conservative or erroneous under-estimated for design of high-rise structures. Dynamic response, vortex, wind directionality, and shedding from other structures are all complicated key factors suppose to be considered in design. Meanwhile, wind tunnel testing is expansive, difficult and sometimes inaccurate even if it is a widely used method in simulation of aerodynamic response. Computational …

Contributors
Zhu, Xitong, Hjelmstad, Keith D, Rajan, Subramaniam, et al.
Created Date
2014