Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Subject
Date Range
2011 2019


Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with ...

Contributors
Han, Zhun, Smith, Hal, Armbruster, Dieter, et al.
Created Date
2012

Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management. This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at ...

Contributors
Rutter, Erica Marie, Kuang, Yang, Kostelich, Eric J, et al.
Created Date
2016

Dopamine (DA) is a neurotransmitter involved in attention, goal oriented behavior, movement, reward learning, and short term and working memory. For the past four decades, mathematical and computational modeling approaches have been useful in DA research, and although every modeling approach has limitations, a model is an efficient way to generate and explore hypotheses. This work develops a model of DA dynamics in a representative, single DA neuron by integrating previous experimental, theoretical and computational research. The model consists of three compartments: the cytosol, the vesicles, and the extracellular space and forms the basis of a new mathematical paradigm for ...

Contributors
Tello-Bravo, David, Crook, Sharon M, Greenwood, Priscilla E, et al.
Created Date
2012

A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric identification. Further, an effective method for simulating fingerprints may provide insight into the biological processes underlying print formation. However, previous attempts at simulating prints have been unsatisfactory. We approach the problem of creating artificial prints through a pattern formation model. We demonstrate how it is possible to generate distinctive patterns ...

Contributors
Coltin, Kevin Curosh, Armbruster, Hans D, Platte, Rodrigo B, et al.
Created Date
2013

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. ...

Contributors
Luli, Dori, Crook, Sharon, Baer, Steven, et al.
Created Date
2013

A key factor in the success of social animals is their organization of work. Mathematical models have been instrumental in unraveling how simple, individual-based rules can generate collective patterns via self-organization. However, existing models offer limited insights into how these patterns are shaped by behavioral differences within groups, in part because they focus on analyzing specific rules rather than general mechanisms that can explain behavior at the individual-level. My work argues for a more principled approach that focuses on the question of how individuals make decisions in costly environments. In Chapters 2 and 3, I demonstrate how this approach provides ...

Contributors
Udiani, Oyita Udiani, Kang, Yun, Fewell, Jennifer H, et al.
Created Date
2016

Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva. A mathematical model is developed for the spread of rabies in a spatially distributed fox ...

Contributors
Alanazi, Khalaf Matar, Thieme, Horst R., Jackiewicz, Zdzislaw, et al.
Created Date
2018

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while ...

Contributors
Alvarez, Roberto, Milner, Fabio A, Nagy, John D, et al.
Created Date
2014

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded ...

Contributors
Kshitij, Abhinav, Dahm, Werner J.A., Herrmann, Marcus, et al.
Created Date
2019

From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce the number of grid points. However, the problem of how to solve governing equations on non-uniform mesh is then imposed to the numerical solver. Moreover, if a device simulator is integrated into a multi-scale simulator, the problem size will be further increased. Consequently, there exist two challenges for the current ...

Contributors
Guo, Xinchen, Vasileska, Dragica, Goodnick, Stephen, et al.
Created Date
2015

Factory production is stochastic in nature with time varying input and output processes that are non-stationary stochastic processes. Hence, the principle quantities of interest are random variables. Typical modeling of such behavior involves numerical simulation and statistical analysis. A deterministic closure model leading to a second order model for the product density and product speed has previously been proposed. The resulting partial differential equations (PDE) are compared to discrete event simulations (DES) that simulate factory production as a time dependent M/M/1 queuing system. Three fundamental scenarios for the time dependent influx are studied: An instant step up/down of the mean ...

Contributors
Wienke, Matthew Richard, Armbruster, Dieter, Jones, Donald, et al.
Created Date
2015

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left<x^2\right> \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the ...

Contributors
Holeva, Thomas Matthew, Ringhofer, Christian, Baer, Steve, et al.
Created Date
2014

In the field of infectious disease epidemiology, the assessment of model robustness outcomes plays a significant role in the identification, reformulation, and evaluation of preparedness strategies aimed at limiting the impact of catastrophic events (pandemics or the deliberate release of biological agents) or used in the management of disease prevention strategies, or employed in the identification and evaluation of control or mitigation measures. The research work in this dissertation focuses on: The comparison and assessment of the role of exponentially distributed waiting times versus the use of generalized non-exponential parametric distributed waiting times of infectious periods on the quantitative and ...

Contributors
Morale Butler, Emmanuel Jesús, Castillo-Chavez, Carlos, Aparicio, Juan P, et al.
Created Date
2014

The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate to the intracellular concentration of a limiting nutrient. Although the Droop model has been an important modeling tool in ecology, it has only recently been applied to study cancer biology. Cancer cells live in an ecological setting, interacting and competing with normal and other cancerous cells for nutrients and space, ...

Contributors
Everett, Rebecca Anne, Kuang, Yang, Nagy, John, et al.
Created Date
2015

This work is an assemblage of three applied projects that address the institutional and spatial constraints to managing threatened and endangered (T &amp; E) terrestrial species. The first project looks at the role of the Endangered Species Act (ESA) in protecting wildlife and whether banning non&ndash;conservation activities on multi-use federal lands is socially optimal. A bioeconomic model is used to identify scenarios where ESA&ndash;imposed regulations emerge as optimal strategies and to facilitate discussion on feasible long&ndash;term strategies in light of the ongoing public land&ndash;use debate. Results suggest that banning harmful activities is a preferred strategy when valued species are in ...

Contributors
Salau, Kehinde Rilwan, Janssen, Marco A, Fenichel, Eli P, et al.
Created Date
2013

The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species and pathogens. I approach the problem using theoretical and applied models in ecology and economics. First, I use a multi-species theoretical network model to evaluate the ability of dispersal to maintain system-level biodiversity and productivity. I then extend this analysis to consider the effects of dispersal in a coupled social-ecological system where ...

Contributors
Shanafelt, David William, Perrings, Charles, Fenichel, Eli, et al.
Created Date
2016

In the honey bee antennal lobe, uniglomerular projection neurons (uPNs) transiently spike to odor sensory stimuli with odor-specific response latencies, i.e., delays to first spike after odor stimulation onset. Recent calcium imaging studies show that the spatio-temporal response profile of the activated uPNs are dynamic and changes as a result of associative conditioning, facilitating odor-detection of learned odors. Moreover, odor-representation in the antennal lobe undergo reward-mediated plasticity processes that increase response delay variations in the activated ensemble of uniglomerular projection neurons. Octopamine is necessarily involved in these plasticity processes. Yet, the cellular mechanisms are not well understood. I hypothesize that ...

Contributors
Smith, Adrian Nicholas, Castillo-Chavez, Carlos, Sinakevitch, Irina T., et al.
Created Date
2016

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture. First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to ...

Contributors
Packer, Aaron, Kuang, Yang, Nagy, John, et al.
Created Date
2014

The Mathematical and Theoretical Biology Institute (MTBI) is a summer research program for undergraduate students, largely from underrepresented minority groups. Founded in 1996, it serves as a 'life-long' mentorship program, providing continuous support for its students and alumni. This study investigates how MTBI supports student development in applied mathematical research. This includes identifying of motivational factors to pursue and develop capacity to complete higher education. The theoretical lens of developmental psychologists Lev Vygotsky (1978, 1987) and Lois Holzman (2010) that sees learning and development as a social process is used. From this view student development in MTBI is attributed to ...

Contributors
Evangelista, Arlene Morales, Castillo-Chavez, Carlos, Holmes, Raquell M, et al.
Created Date
2015

A sequence of models is developed to describe urban population growth in the context of the embedded physical, social and economic environments and an urban disease are developed. This set of models is focused on urban growth and the relationship between the desire to move and the utility derived from city life. This utility is measured in terms of the economic opportunities in the city, the level of human constructed amenity, and the level of amenity caused by the natural environment. The set of urban disease models is focused on examining prospects of eliminating a disease for which a vaccine ...

Contributors
Murillo, David, Castillo-Chavez, Carlos, Anderies, John M, et al.
Created Date
2012

This thesis consists of three projects employing complexity economics methods to explore firm dynamics. The first is the Firm Ecosystem Model, which addresses the institutional conditions of capital access and entrenched competitive advantage. Larger firms will be more competitive than smaller firms due to efficiencies of scale, but the persistence of larger firms is also supported institutionally through mechanisms such as tax policy, capital access mechanisms and industry-favorable legislation. At the same time, evidence suggests that small firms innovate more than larger firms, and an aggressive firm-as-value perspective incentivizes early investment in new firms in an attempt to capture that ...

Contributors
Applegate, J M, Janssen, Marcus A, Hoetker, Glenn, et al.
Created Date
2018

This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity using the method of transport equations to study heterogeneous susceptibility to diseases in open populations (those with births and deaths). I then present three separate models of behavioral heterogeneity. An SIS/SAS model of gonorrhea transmission in a population of highly active men-who-have-sex-with-men (MSM) is presented to study the impact of ...

Contributors
Morin, Benjamin Richard, Castillo-Chavez, Carlos, Hiebeler, David, et al.
Created Date
2012

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, ...

Contributors
Chang, Shaojie, Baer, Steven M, Gardner, Carl L, et al.
Created Date
2012

In this dissertation the potential impact of some social, cultural and economic factors on Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is addressed. A mathematical model, calibrated with data from the 2014 West African outbreak, is used to show the dynamics of EVD control under various quarantine and isolation effectiveness regimes. It is shown that in order to make a difference it must reach a high proportion of the infected population. The effect of EVD-dead bodies has been incorporated in ...

Contributors
Espinoza, Baltazar, Castillo-Chávez, Carlos, Kang, Yun, et al.
Created Date
2018

I investigate two models interacting agent systems: the first is motivated by the flocking and swarming behaviors in biological systems, while the second models opinion formation in social networks. In each setting, I define natural notions of convergence (to a ``flock" and to a ``consensus'', respectively), and study the convergence properties of each in the limit as $t \rightarrow \infty$. Specifically, I provide sufficient conditions for the convergence of both of the models, and conduct numerical experiments to study the resulting solutions. Dissertation/Thesis

Contributors
Theisen, Ryan, Motsch, Sebastien, Lanchier, Nicholas, et al.
Created Date
2018

The Kuramoto model is an archetypal model for studying synchronization in groups of nonidentical oscillators where oscillators are imbued with their own frequency and coupled with other oscillators though a network of interactions. As the coupling strength increases, there is a bifurcation to complete synchronization where all oscillators move with the same frequency and show a collective rhythm. Kuramoto-like dynamics are considered a relevant model for instabilities of the AC-power grid which operates in synchrony under standard conditions but exhibits, in a state of failure, segmentation of the grid into desynchronized clusters. In this dissertation the minimum coupling strength required ...

Contributors
Gilg, Brady, Armbruster, Dieter, Mittelmann, Hans, et al.
Created Date
2018

Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering. The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers are first introduced via prescription, distinguishing it from other drugs in which the most common path to abuse begins with experimentation. I develop and analyze two mathematical models of Vicodin use and abuse, considering only those patients with an initial Vicodin prescription. Through adjoint sensitivity analysis, I show that focusing ...

Contributors
Caldwell, Wendy K, Wirkus, Stephen, Asphaug, Erik, et al.
Created Date
2019

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative ...

Contributors
Jones, Jeremiah, Gardner, Carl, Gardner, Carl, et al.
Created Date
2013

One explanation for membrane accommodation in response to a slowly rising current, and the phenomenon underlying the dynamics of elliptic bursting in nerves, is the mathematical problem of dynamic Hopf bifurcation. This problem has been studied extensively for linear (deterministic and stochastic) current ramps, nonlinear ramps, and elliptic bursting. These studies primarily investigated dynamic Hopf bifurcation in space-clamped excitable cells. In this study we introduce a new phenomenon associated with dynamic Hopf bifurcation. We show that for excitable spiny cables injected at one end with a slow current ramp, the generation of oscillations may occur an order one distance away ...

Contributors
Bilinsky, Lydia, Baer, Steven M, Crook, Sharon M, et al.
Created Date
2012

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and ...

Contributors
Pell, Bruce, Kuang, Yang, Chowell-Puente, Gerardo, et al.
Created Date
2016

The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for ...

Contributors
Walker, Phillip, Tang, Wenbo, Kostelich, Eric, et al.
Created Date
2018

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several ...

Contributors
Evilsizor, Stephen, Lanchier, Nicolas, Kang, Yun, et al.
Created Date
2016

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which ...

Contributors
Ramachandran, Ragesh Kumar, Berman, Spring M, Mignolet, Marc, et al.
Created Date
2018

A numerical study of chemotaxis in 3D turbulence is presented here. Direct Numerical Simulation were used to calculate the nutrient uptake for both motile and non-motile bacterial species and by applying the dynamical systems theory the effect of flow topology on the variability of chemotaxis is analyzed. It is done by injecting a highly localized patch of nutrient in the turbulent flow, and analyzing the evolution of reaction associated with the observed high and low stretching regions. The Gaussian nutrient patch is released at different locations and the corresponding nutrient uptake is obtained. The variable stretching characteristics of the flow ...

Contributors
George, Jino, Tang, Wenbo, Peet, Yulia, et al.
Created Date
2017

High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are ...

Contributors
Denker, Dennis, Gelb, Anne, Archibald, Richard, et al.
Created Date
2016

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a ...

Contributors
Edme, Soho, Wirkus, Stephen, Castillo-Chavez, Carlos, et al.
Created Date
2011

Diabetes is a disease characterized by reduced insulin action and secretion, leading to elevated blood glucose. In the 1990s, studies showed that intravenous injection of fatty acids led to a sharp negative response in insulin action that subsided hours after the injection. The molecule associated with diminished insulin signalling response was a byproduct of fatty acids, diacylglycerol. This dissertation is focused on the formulation of a model built around the known mechanisms of glucose and fatty acid storage and metabolism within myocytes, as well as downstream effects of diacylglycerol on insulin action. Data from euglycemic-hyperinsulinemic clamp with fatty acid infusion ...

Contributors
Burkow, Daniel Harrison, Li, Jiaxu, Castillo-Chavez, Carlos, et al.
Created Date
2017

Earth-system models describe the interacting components of the climate system and technological systems that affect society, such as communication infrastructures. Data assimilation addresses the challenge of state specification by incorporating system observations into the model estimates. In this research, a particular data assimilation technique called the Local Ensemble Transform Kalman Filter (LETKF) is applied to the ionosphere, which is a domain of practical interest due to its effects on infrastructures that depend on satellite communication and remote sensing. This dissertation consists of three main studies that propose strategies to improve space- weather specification during ionospheric extreme events, but are generally ...

Contributors
Durazo, Juan Alberto, Kostelich, Eric J., Mahalov, Alex, et al.
Created Date
2018

The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of ...

Contributors
Chowell, Diego, Castillo-Chavez, Carlos, Anderson, Karen S, et al.
Created Date
2016

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection. A deterministic mathematical model of HIV transmission is developed to evaluate the public-health impact of oral PrEP interventions, and to compare PrEP effectiveness with respect to different evaluation methods. The effects of demographic, behavioral, and epidemic parameters on the PrEP impact are studied in a multivariate sensitivity analysis. Most of ...

Contributors
Zhao, Yuqin, Kuang, Yang, Taylor, Jesse, et al.
Created Date
2014

Head and neck squamous cell carcinoma (HNSCC), the sixth most common cancer type worldwide, accounts for more than 630,000 new cases and 350,000 deaths annually. Drug-resistance and tumor recurrence are the most challenging problems in head and neck cancer treatment. It is hypothesized that a very small fraction of stem-like cells within HNSCC tumor, called cancer stem cells (CSCs), is responsible for tumor initiation, progression, resistance and recurrence. It has also been shown that IL-6 secreted by head and neck tumor-associated endothelial cells (ECs) enhances the survival, self-renewal and tumorigenic potential of head and neck CSCs. In this study we ...

Contributors
Nazari, Fereshteh, Jackson, Trachette L., Jackson, Trachette L., et al.
Created Date
2017

A functioning food web is the basis of a functioning community and ecosystem. Thus, it is important to understand the dynamics that control species behaviors and interactions. Alterations to the fundamental dynamics can prove detrimental to the future success of our environment. Research and analysis focus on the global dynamics involved in intraguild predation (IGP), a three species subsystem involving both competition and predation. A mathematical model is derived using differential equations based on pre-existing models to accurately predict species behavior. Analyses provide sufficient conditions for species persistence and extinction that can be used to explain global dynamics. Dynamics are ...

Contributors
Wedekin, Lauren Nicole, Kang, Yun, Green, Douglas, et al.
Created Date
2012

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals ...

Contributors
Baez, Javier, Kuang, Yang, Kostelich, Eric, et al.
Created Date
2017

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause. Motivated by the fact that understanding the dynamics of ...

Contributors
Okuneye, Kamaldeen Olatunde, Gumel, Abba B, Kuang, Yang, et al.
Created Date
2018

This thesis presents a model for the buying behavior of consumers in a technology market. In this model, a potential consumer is not perfectly rational, but exhibits bounded rationality following the axioms of prospect theory: reference dependence, diminishing returns and loss sensitivity. To evaluate the products on different criteria, the analytic hierarchy process is used, which allows for relative comparisons. The analytic hierarchy process proposes that when making a choice between several alternatives, one should measure the products by comparing them relative to each other. This allows the user to put numbers to subjective criteria. Additionally, evidence suggests that a ...

Contributors
Elkholy, Alexander, Armbruster, Dieter, Kempf, Karl, et al.
Created Date
2014

This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels. A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated ...

Contributors
Sandoval, Steven P., Papandreou-Suppappola, Antonia, Liss, Julie M, et al.
Created Date
2016

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward ...

Contributors
Kareva, Irina, Castillo-Chavez, Carlos, Collins, James, et al.
Created Date
2012

The geotechnical community typically relies on recommendations made from numerical simulations. Commercial software exhibits (local) numerical instabilities in layered soils across soil interfaces. This research work investigates unsaturated moisture flow in layered soils and identifies a possible source of numerical instabilities across soil interfaces and potential improvement in numerical schemes for solving the Richards' equation. The numerical issue at soil interfaces is addressed by a (nonlinear) interface problem. A full analysis of the simplest soil hydraulic model, the Gardner model, identifies the conditions of ill-posedness of the interface problem. Numerical experiments on various (more advanced and practical) soil hydraulic models ...

Contributors
Liu, Ruowen, Welfert, Bruno D, Houston, Sandra L, et al.
Created Date
2017

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most ...

Contributors
Ilkturk, Utku, Gelb, Anne, Platte, Rodrigo, et al.
Created Date
2015

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the ...

Contributors
Patterson-Lomba, Oscar, Castillo-Chavez, Carlos, Towers, Sherry, et al.
Created Date
2014

Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both ...

Contributors
Summer, Ilyssa, Castillo-Chavez, Carlos, Nagy, John, et al.
Created Date
2016

Functional magnetic resonance imaging (fMRI) is one of the popular tools to study human brain functions. High-quality experimental designs are crucial to the success of fMRI experiments as they allow the collection of informative data for making precise and valid inference with minimum cost. The primary goal of this study is on identifying the best sequence of mental stimuli (i.e. fMRI design) with respect to some statistically meaningful optimality criteria. This work focuses on two related topics in this research field. The first topic is on finding optimal designs for fMRI when the design matrix is uncertain. This challenging design ...

Contributors
Zhou, Lin, Kao, Ming-Hung, Welfert, Bruno, et al.
Created Date
2017

The Visceral Leishmaniasis (VL) is primarily endemic in five countries, with India and Sudan having the highest burden. The risk factors associated with VL are either unknown in some regions or vary drastically among empirical studies. Here, a dynamical model, motivated and informed by field data from the literature, is analyzed and employed to identify and quantify the impact of region dependent risks on the VL transmission dynamics. Parameter estimation procedures were developed using model-derived quantities and empirical data from multiple resources. The dynamics of VL depend on the estimates of the control reproductive number, RC, interpreted as the average ...

Contributors
Barley, Kamal Kevin, Castillo-Chavez, Carlos, Mubayi, Anuj, et al.
Created Date
2016

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is ...

Contributors
Yalim, Jason, Welfert, Bruno D., Lopez, Juan M., et al.
Created Date
2019

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA). Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the ...

Contributors
Knutson, Brent, Tang, Wenbo, Calhoun, Ronald, et al.
Created Date
2018

This dissertation will look at large scale collaboration through the lens of online communities to answer questions about what makes a collaboration persist. Results address how collaborations attract contributions, behaviors that could give rise to patterns seen in the data, and the properties of collaborations that drive those behaviors. It is understood that collaborations, online and otherwise, must retain users to remain productive. However, before users can be retained they must be recruited. In the first project, a few necessary properties of the ``attraction'' function are identified by constraining the dynamics of an ODE (Ordinary Differential Equation) model. Additionally, more ...

Contributors
Manning, Miles, Janssen, Marcus A, Castillo-Chavez, Carlos, et al.
Created Date
2017

There was a growing trend in the automotive market on the adoption of Hybrid Electric Vehicles (HEVs) for consumers to purchase. This was partially due to external pressures such as the effects of global warming, cost of petroleum, governmental regulations, and popularity of the vehicle type. HEV technology relied on a variety of factors which included the powertrain (PT) of the system, external driving conditions, and the type of driving pattern being driven. The core foundation for HEVs depended heavily on the battery pack and chemistry being adopted for the vehicle performance and operations. This paper focused on the effects ...

Contributors
Opitz, Andrew David, Kannan, Arunachala, Mayyas, Abdel, et al.
Created Date
2016

In recent decades, marine ecologists have conducted extensive field work and experiments to understand the interactions between bacteria and bacteriophage (phage) in marine environments. This dissertation provides a detailed rigorous framework for gaining deeper insight into these interactions. Specific features of the dissertation include the design of a new deterministic Lotka-Volterra model with n + 1 bacteria, n/n + 1 phage, with explicit nutrient, where the jth phage strain infects the first j bacterial strains, a perfectly nested infection network (NIN). This system is subject to trade-off conditions on the life-history traits of both bacteria and phage given in an ...

Contributors
Korytowski, Daniel A., Smith, Hal, Gumel, Abba, et al.
Created Date
2016

Topological methods for data analysis present opportunities for enforcing certain invariances of broad interest in computer vision: including view-point in activity analysis, articulation in shape analysis, and measurement invariance in non-linear dynamical modeling. The increasing success of these methods is attributed to the complementary information that topology provides, as well as availability of tools for computing topological summaries such as persistence diagrams. However, persistence diagrams are multi-sets of points and hence it is not straightforward to fuse them with features used for contemporary machine learning tools like deep-nets. In this paper theoretically well-grounded approaches to develop novel perturbation robust topological ...

Contributors
Thopalli, Kowshik, Turaga, Pavan Kumar, Suppappola, Antonia PAPANDREOU, et al.
Created Date
2017

This dissertation discusses the Cournot competition and competitions in the exploitation of common pool resources and its extension to the tragedy of the commons. I address these models by using potential games and inquire how these models reflect the real competitions for provisions of environmental resources. The Cournot models are dependent upon how many firms there are so that the resultant Cournot-Nash equilibrium is dependent upon the number of firms in oligopoly. But many studies do not take into account how the resultant Cournot-Nash equilibrium is sensitive to the change of the number of firms. Potential games can find out ...

Contributors
Mamada, Robert Hideo, Perrings, Charles, Castillo-Chavez, Carlos, et al.
Created Date
2017

Foraging strategies in social animals are often shaped by change in an organism's natural surrounding. Foraging behavior can hence be highly plastic, time, and condition dependent. The motivation of my research is to explore the effects of dispersal behavior in predators or parasites on population dynamics in heterogeneous environments by developing varied models in different contexts through closely working with ecologists. My models include Ordinary Differential Equation (ODE)-type meta population models and Delay Differential Equation (DDE) models with validation through data. I applied dynamical theory and bifurcation theory with carefully designed numerical simulations to have a better understanding on the ...

Contributors
Messan, Komi Segno, Kang, Yun, Castillo-Chavez, Carlos, et al.
Created Date
2017

Using a simple $SI$ infection model, I uncover the overall dynamics of the system and how they depend on the incidence function. I consider both an epidemic and endemic perspective of the model, but in both cases, three classes of incidence functions are identified. In the epidemic form, power incidences, where the infective portion $I^p$ has $p\in(0,1)$, cause unconditional host extinction, homogeneous incidences have host extinction for certain parameter constellations and host survival for others, and upper density-dependent incidences never cause host extinction. The case of non-extinction in upper density-dependent incidences extends to the case where a latent period is ...

Contributors
Farrell, Alex Patrick, Thieme, Horst R, Smith, Hal, et al.
Created Date
2017

Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations. The contributions of this work include a ...

Contributors
Araujo Mitrano, Arthur, Platte, Rodrigo, Wright, Grady, et al.
Created Date
2016

Inverse problems model real world phenomena from data, where the data are often noisy and models contain errors. This leads to instabilities, multiple solution vectors and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically used as a penalty function to induce stability and allow for the incorporation of a priori information about the desired solution. In this thesis, high order regularization techniques are developed for image and function reconstruction from noisy or misleading data. Specifically the incorporation of the Polynomial Annihilation operator allows for the accurate exploitation of the sparse representation of each function in the edge domain. ...

Contributors
Scarnati, Theresa Ann, Gelb, Anne, Platte, Rodrigo, et al.
Created Date
2018

This dissertation examines six different models in the field of econophysics using interacting particle systems as the basis of exploration. In each model examined, the underlying structure is a graph G = (V , E ), where each x ∈ V represents an individual who is characterized by the number of coins in her possession at time t. At each time step t, an edge (x, y) ∈ E is chosen at random, resulting in an exchange of coins between individuals x and y according to the rules of the model. Random variables ξt, and ξt(x) keep track of the ...

Contributors
Reed, Stephanie J, Lanchier, Nicolas, Smith, Hal, et al.
Created Date
2019

The three-dimensional flow contained in a rapidly rotating circular split cylinder is studied numerically solving the Navier--Stokes equations. The cylinder is completely filled with fluid and is split at the midplane. Three different types of boundary conditions were imposed, leading to a variety of instabilities and complex flow dynamics. The first configuration has a strong background rotation and a small differential rotation between the two halves. The axisymmetric flow was first studied identifying boundary layer instabilities which produce inertial waves under some conditions. Limit cycle states and quasiperiodic states were found, including some period doubling bifurcations. Then, a three-dimensional study ...

Contributors
Gutierrez Castillo, Paloma, Lopez, Juan M., Herrmann, Marcus, et al.
Created Date
2017

There have been many studies on the dynamics of infectious diseases considering the age structure of the population. This study analyzes the dynamics when the population is stratified by size. This kind of models are useful in the spread of a disease in fisheries where size matters, for microorganism populations or even human diseases that are driven by weight. A simple size structured SIR model is introduced for which a threshold condition, R0, equilibria and stability are established in special cases. Hethcote's approach is used to derive, from first principles, a parallel ODE size-structure system involving n-size classes.The specific case ...

Contributors
Torres-Garcia, Griselle, Castillo-Chavez, Carlos, Feng, Zhilan, et al.
Created Date
2012

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on ...

Contributors
Vega-Guzman, Jose M., Sulov, Sergei K, Castillo-Chavez, Carlos, et al.
Created Date
2013

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to ...

Contributors
Huang, Qing, Eubank, Randall, Renaut, Rosemary, et al.
Created Date
2012

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected ...

Contributors
Liu, Hao, Kuang, Yang, Jackiewicz, Zdzislaw, et al.
Created Date
2013

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework ...

Contributors
Bliss, Nadya Travinin, Laubichler, Manfred, Castillo-Chavez, Carlos, et al.
Created Date
2015

There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework that produce rich dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This ...

Contributors
Peace, Angela Lynn, Kuang, Yang, Elser, James J, et al.
Created Date
2014

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak? This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy. Age-specific per capita constraint rates play an important role on the ...

Contributors
Morales-Rosado, Romarie, Castillo-Chavez, Carlos, Mubayi, Anuj, et al.
Created Date
2016

This dissertation investigates the classification of systemic lupus erythematosus (SLE) in the presence of non-SLE alternatives, while developing novel curve classification methodologies with wide ranging applications. Functional data representations of plasma thermogram measurements and the corresponding derivative curves provide predictors yet to be investigated for SLE identification. Functional nonparametric classifiers form a methodological basis, which is used herein to develop a) the family of ESFuNC segment-wise curve classification algorithms and b) per-pixel ensembles based on logistic regression and fused-LASSO. The proposed methods achieve test set accuracy rates as high as 94.3%, while returning information about regions of the temperature domain ...

Contributors
Buscaglia, Robert, Kamarianakis, Yiannis, Armbruster, Dieter, et al.
Created Date
2018

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm ...

Contributors
Thatcher, Andrea, Armbruster, Hans, Motsch, Sebastien, et al.
Created Date
2015

This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to the black-box identification of linear time-invariant (LTI) systems with both finite (FIR) and infinite (IIR) impulse responses, temporal systems modeled by ordinary differential equations (ODE), and spatio-temporal systems modeled by partial differential equations (PDE). For LTI systems, the experimental results illustrate existing theory for identification of LTI FIR systems. It is seen that basis pursuit does not identify sparse LTI ...

Contributors
Thompson, Robert C., Platte, Rodrigo, Gelb, Anne, et al.
Created Date
2012

Complex dynamical systems consisting interacting dynamical units are ubiquitous in nature and society. Predicting and reconstructing nonlinear dynamics of units and the complex interacting networks among them serves the base for the understanding of a variety of collective dynamical phenomena. I present a general method to address the two outstanding problems as a whole based solely on time-series measurements. The method is implemented by incorporating compressive sensing approach that enables an accurate reconstruction of complex dynamical systems in terms of both nodal equations that determines the self-dynamics of units and detailed coupling patterns among units. The representative advantages of the ...

Contributors
Yang, Rui, Lai, Ying-Cheng, Duman, Tolga M, et al.
Created Date
2012

Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. ...

Contributors
Jones, Kimberly, Tang, Wenbo, Kang, Yun, et al.
Created Date
2015

Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting of cattle among East African herders or food sharing among vampire bats. With the broad goal of better understanding the mathematics of such binary welfare and risk pooling, agent-based simulations are conducted to explore socially optimal transfer policies and sharing network structures, kinetic exchange models that utilize tools from the kinetic theory of gas dynamics are utilized to characterize the wealth distribution of an NBT economy, and a variant of repeated prisoner’s dilemma ...

Contributors
Kayser, Kirk, Armbruster, Dieter, Lampert, Adam, et al.
Created Date
2018

Chapter 1 introduces some key elements of important topics such as; quantum mechanics, representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´ tivistic wave equations that will play an important role in the work to follow. In Chapter 2, a complex covariant form of the classical Maxwell’s equations in a moving medium or at rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its connection with the Pauli-Lubanski vector from the viewpoint of the ...

Contributors
Lanfear, Nathan A., Suslov, Sergei, Kotschwar, Brett, et al.
Created Date
2016

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. When these equations are organized into a cascade, it is demonstrated that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which ...

Contributors
Young, Jonathan Trinity, Armbruster, Dieter, Platte, Rodrigo, et al.
Created Date
2013

The most advanced social insects, the eusocial insects, form often large societies in which there is reproductive division of labor, queens and workers, have overlapping generations, and cooperative brood care where daughter workers remain in the nest with their queen mother and care for their siblings. The eusocial insects are composed of representative species of bees and wasps, and all species of ants and termites. Much is known about their organizational structure, but remains to be discovered. The success of social insects is dependent upon cooperative behavior and adaptive strategies shaped by natural selection that respond to internal or external ...

Contributors
Rodriguez Messan, Marisabel, Kang, Yun, Castillo-Chavez, Carlos, et al.
Created Date
2018

This dissertation explores the impact of environmental dependent risk on disease dynamics within a Lagrangian modeling perspective; where the identity (defined by place of residency) of individuals is preserved throughout the epidemic process. In Chapter Three, the impact of individuals who refuse to be vaccinated is explored. MMR vaccination and birth rate data from the State of California are used to determine the impact of the anti-vaccine movement on the dynamics of growth of the anti-vaccine sub-population. Dissertation results suggest that under realistic California social dynamics scenarios, it is not possible to revert the influence of anti-vaccine contagion. In Chapter ...

Contributors
Moreno Martinez, Victor Manuel, Castillo-Chavez, Carlos, Kang, Yun, et al.
Created Date
2018