Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


The optical valley of water, where water is transparent only in the visible range, is a fascinating phenomenon and cannot be modeled by conventional dielectric material modeling. While dielectric properties of materials can be modeled as a sum of Lorentz or Debye simple harmonic oscillators, water is the exception. In 1992 Diaz and Alexopoulos published a causal and passive circuit model that predicted the window of water by adding a “zero shunt” circuit in parallel with every Debye and Lorentz circuit branch. Other than the Diaz model, extensive literature survey yielded no universal dielectric material model that included water or …

Contributors
Alam, Shahriar, Diaz, Rodolfo E, Krause, Stephen, et al.
Created Date
2017