Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Contributor
Date Range
2012 2019


Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban planning, identifying cover in military training or flight training. Detection of such features using commonly available geospatial data like orthographic aerial imagery is very challenging because rooftop and tree textures are often camouflaged by similar looking features like roads, ground and grass. So, additonal data such as LIDAR, multispectral imagery and multiple viewpoints are exploited for more accurate detection. However, such data is often not available, or may be improperly …

Contributors
Khanna, Kunal, Femiani, John, Wonka, Peter, et al.
Created Date
2013

In the field of Geographic Information Science (GIScience), we have witnessed the unprecedented data deluge brought about by the rapid advancement of high-resolution data observing technologies. For example, with the advancement of Earth Observation (EO) technologies, a massive amount of EO data including remote sensing data and other sensor observation data about earthquake, climate, ocean, hydrology, volcano, glacier, etc., are being collected on a daily basis by a wide range of organizations. In addition to the observation data, human-generated data including microblogs, photos, consumption records, evaluations, unstructured webpages and other Volunteered Geographical Information (VGI) are incessantly generated and shared on …

Contributors
Shao, Hu, Li, Wenwen, Rey, Sergio, et al.
Created Date
2018

This document presents a new implementation of the Smoothed Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. The main goal of this document is to present to the reader an alternative solution to the largely studied and researched problem of fluid simulation. Most other solutions have been implemented using the NVIDIA CUDA framework; however, the proposed solution in this document uses the Microsoft general-purpose computing on graphics processing units API. The implementation allows for the simulation of a large number of particles in a real-time scenario. The solution presented here uses the Smoothed Particles Hydrodynamics algorithm to calculate the forces …

Contributors
Figueroa, Gustavo, Farin, Gerald, Maciejewski, Ross, et al.
Created Date
2012

In the last few years, there has been a tremendous increase in the use of big data. Most of this data is hard to understand because of its size and dimensions. The importance of this problem can be emphasized by the fact that Big Data Research and Development Initiative was announced by the United States administration in 2012 to address problems faced by the government. Various states and cities in the US gather spatial data about incidents like police calls for service. When we query large amounts of data, it may lead to a lot of questions. For example, when …

Contributors
Tahir, Anique, Elsayed, Mohamed, Hsiao, Ihan, et al.
Created Date
2018

Coastal areas are susceptible to man-made disasters, such as oil spills, which not only have a dreadful impact on the lives of coastal communities and businesses but also have lasting and hazardous consequences. The United States coastal areas, especially the Gulf of Mexico, have witnessed devastating oil spills of varied sizes and durations that resulted in major economic and ecological losses. These disasters affected the oil, housing, forestry, tourism, and fishing industries with overall costs exceeding billions of dollars (Baade et al. (2007); Smith et al. (2011)). Extensive research has been done with respect to oil spill simulation techniques, spatial …

Contributors
Pydi Medini, Prannoy Chandra, Maciejewski, Ross, Grubesic, Anthony, et al.
Created Date
2018

Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three enddiastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia …

Contributors
Shin, Jae Yul, Liang, Jianming, Maciejewski, Ross, et al.
Created Date
2016

The rise in globalization has led to regional climate events having an increased effect on global food security. These indirect first- and second-order effects are generally geographically disparate from the region experiencing the climate event. Without understanding the topology of the food trade network, international aid may be naively directed to the countries directly experiencing the climate event and not to countries that will face potential food insecurity due to that event. This thesis focuses on the development of a visual analytics system for exploring second-order effects of climate change under the lens of global trade. In order to visualize …

Contributors
Seville, Travis Allen, Maciejewski, Ross, Hsiao, I-Han, et al.
Created Date
2017

An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only useful, but also novel. In practice, there are initiatives such as Free and Open Source Software communities developing innovative software. In research, the field of crowdsourced creativity, which attempts to design scalable support mechanisms, is blooming. However, both contexts still present many opportunities for advancement. In this dissertation, I seek …

Contributors
da Silva Girotto, Victor Augusto, Walker, Erin A, Burleson, Winslow, et al.
Created Date
2019

In visualizing information hierarchies, icicle plots are efficient diagrams in that they provide the user a straightforward layout for different levels of data in a hierarchy and enable the user to compare items based on the item width. However, as the size of the hierarchy grows large, the items in an icicle plot end up being small and indistinguishable. In this thesis, by maintaining the positive characteristics of traditional icicle plots and incorporating new features such as dynamic diagram and active layer, we developed an interactive visualization that allows the user to selectively drill down or roll up to review …

Contributors
Wu, Bi, Maciejewski, Ross, Runger, George, et al.
Created Date
2014

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal …

Contributors
Ta, Duyan Nguyen, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2013

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, …

Contributors
Hayden, Thomas, Maciejewski, Ross, Wang, Yalin, et al.
Created Date
2014

In blindness research, the corpus callosum (CC) is the most frequently studied sub-cortical structure, due to its important involvement in visual processing. While most callosal analyses from brain structural magnetic resonance images (MRI) are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a complete set of 3D morphological differences in the corpus callosum between two groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and inferior patches on which we compute a volumetric harmonic field by solving the Laplace's …

Contributors
Xu, Liang, Wang, Yalin, Maciejewski, Ross, et al.
Created Date
2013

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different choices of mesh connectivity to represent the same 3D shape or surface. One key concept of QD mesh connectivity is the distinction between regular and irregular elements: a vertex with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four sides is regular; otherwise, …

Contributors
Peng, Chi-Han, Wonka, Peter, Maciejewski, Ross, et al.
Created Date
2014

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive. More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand …

Contributors
Shaabani, Elham, Shakarian, Paulo, Davulcu, Hasan, et al.
Created Date
2019

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations …

Contributors
Alashri, Saud, Davulcu, Hasan, Desouza, Kevin C., et al.
Created Date
2018

Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago. Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social …

Contributors
Morstatter, Fred, Liu, Huan, Kambhampati, Subbarao, et al.
Created Date
2017

Time-series plots are used in many scientific and engineering applications. In this thesis, two new plug-ins for piecewise constant and event time-series are developed within the Eclipse BIRT (Business Intelligence and Reporting Tools) framework. These customizable plug-ins support superdense time, which is required for plotting the dynamics of Parallel DEVS models. These plug-ins are designed to receive time-based alphanumerical data sets from external computing sources, which can then be dynamically plotted. Static and dynamic time-series plotting are demonstrated in two settings. First, as standalone plug-ins, they can be used to create static plots, which can then be included in BIRT …

Contributors
Sundaramoorthi, Savitha, Sarjoughian, Hessam S, Maciejewski, Ross, et al.
Created Date
2015

Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform …

Contributors
NAGENDRA, SHILPA, Huang, Dijiang, Zhao, Ming, et al.
Created Date
2017

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging problem. The challenge arises as a result of the complex interactions between the components of these systems: the digital control, and the physical environment. Furthermore, the software complexity that governs the high-level control logic in these systems is increasing day by day. As a result, in recent years, both the academic community and the industry have been heavily invested in developing tools and methodologies for the development of safety-critical systems. One scalable approach in testing and verification of these systems is through guided system simulation using stochastic optimization techniques. The …

Contributors
Hoxha, Bardh, Fainekos, Georgios, Sarjoughian, Hessam, et al.
Created Date
2017

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts. First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for …

Contributors
Bao, Fan, Wonka, Peter, Maciejewski, Ross, et al.
Created Date
2014