ASU Electronic Theses and Dissertations
This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.
In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.
Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.
- Shrivastava, Aviral
- Gaudette, Benjamin David
- 1 Arizona State University
- 1 Fainekos, Georgios
- 1 Vrudhula, Sarma
- 1 Wu, Carole-Jean
- 1 Public
- Power Modeling
- 1 Computer engineering
- 1 DVFS Controller
- 1 Energy Efficiency
- 1 Mobile Computing
- 1 Performance Modeling
- 1 Stochastic Workloads
- Dwarf Galaxies as Laboratories of Protogalaxy Physics: Canonical Star Formation Laws at Low Metallicity
- Evolutionary Genetics of CORL Proteins
- Social Skills and Executive Functioning in Children with PCDH-19
- Deep Domain Fusion for Adaptive Image Classification
- Software Defined Pulse-Doppler Radar for Over-The-Air Applications: The Joint Radar-Communications Experiment
User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven …
- Contributors
- Gaudette, Benjamin David, Vrudhula, Sarma, Wu, Carole-Jean, et al.
- Created Date
- 2017