Skip to main content

ASU Electronic Theses and Dissertations


This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.


Date Range
2010 2016


This thesis is focused on the study of wind energy integration and is divided into two segments. The first part of the thesis deals with developing a reliability evaluation technique for a wind integrated power system. A multiple-partial outage model is utilized to accurately calculate the wind generation availability. A methodology is presented to estimate the outage probability of wind generators while incorporating their reduced power output levels at low wind speeds. Subsequently, power system reliability is assessed by calculating the loss of load probability (LOLP) and the effect of wind integration on the overall system is analyzed. Actual generation …

Contributors
Sinha, Anubhav, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period. This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies …

Contributors
Dinakar, Abhishek, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2016

This thesis concerns the impact of energy storage on the power system. The rapidly increasing integration of renewable energy source into the grid is driving greater attention towards electrical energy storage systems which can serve many applications like economically meeting peak loads, providing spinning reserve. Economic dispatch is performed with bulk energy storage with wind energy penetration in power systems allocating the generation levels to the units in the mix, so that the system load is served and most economically. The results obtained in previous research to solve for economic dispatch uses a linear cost function for a Direct Current …

Contributors
Gupta, Samir, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on …

Contributors
Mitra, Parag, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2013

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes …

Contributors
Al-Abdullah, Yousef Mohammad, Hedman, Kory W, Vittal, Vijay, et al.
Created Date
2016

An important operating aspect of all transmission systems is power system stability and satisfactory dynamic performance. The integration of renewable resources in general, and photovoltaic resources in particular into the grid has created new engineering issues. A particularly problematic operating scenario occurs when conventional generation is operated at a low level but photovoltaic solar generation is at a high level. Significant solar photovoltaic penetration as a renewable resource is becoming a reality in some electric power systems. In this thesis, special attention is given to photovoltaic generation in an actual electric power system: increased solar penetration has resulted in significant …

Contributors
Pethe, Anushree Sanjeev, Vittal, Vijay, Heydt, Gerald T, et al.
Created Date
2015

There has been a considerable growth in distributed photovoltaic (PV) genera-tion and its integration in electric power distribution systems. This has led to a change in the distribution system infrastructure. Properly planned distributed gen-eration can offer a variety of benefits for system operations and enhance opera-tional performance of the distribution system. However, high penetration of PV resources can give rise to operating conditions which do not arise in traditional systems and one of the potential issues that needs to be addressed involves impact on power quality of the system with respect to the spectral distortion in voltages and currents. The …

Contributors
Joshi, Titiksha Vjay, Heydt, Gerald T, Ayyanar, Raja, et al.
Created Date
2014

This research mainly focuses on improving the utilization of photovoltaic (PV) re-sources in distribution systems by reducing their variability and uncertainty through the integration of distributed energy storage (DES) devices, like batteries, and smart PV in-verters. The adopted theoretical tools include statistical analysis and convex optimization. Operational issues have been widely reported in distribution systems as the penetration of PV resources has increased. Decision-making processes for determining the optimal allo-cation and scheduling of DES, and the optimal placement of smart PV inverters are con-sidered. The alternating current (AC) power flow constraints are used in these optimiza-tion models. The first two …

Contributors
Li, Qifeng, Vittal, Vijay, Heydt, Gerald T, et al.
Created Date
2016

The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models and efficient techniques for analyzing power system operability. The work done in this report focusses on two such topics 1. Analysis of load model parameter uncertainty and sensitivity based pa-rameter estimation for power system studies 2. A systematic approach to n-1-1 analysis for power system security as-sessment To assess the …

Contributors
Mitra, Parag, Vittal, Vijay, Heydt, Gerald T, et al.
Created Date
2016

Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the power distribution systems, and is expected to continue to grow at a significant rate. This has made integration, control and optimal operation of DER units a main area of focus in the design and operation of distribution systems. Grid-connected, distributed PV covers a wide range of power levels ranging from …

Contributors
Narayanan, Anand, Ayyanar, Raja, Vittal, Vijay, et al.
Created Date
2010

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and …

Contributors
Ranganathan Sathyanarayana, Bharadwaj, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution …

Contributors
Haughton, Daniel Andrew, Heydt, Gerald T, Vittal, Vijay, et al.
Created Date
2012

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables …

Contributors
Zhang, Hui, Vittal, Vijay, Heydt, Gerald T, et al.
Created Date
2013